Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề bài: cho hình thanh ABCD (AB//CD). Gọi I là giao điểm của 2 đg chéo AC và BD. Vẽ qua I đường thẳng song song với AB và BC, cắt AD, BC lần lượt tại E,F. chứng minh:
....
bn tự kẻ hình nha :)
a) Xét tg ACD, có: EI // DC
\(\Rightarrow\frac{EI}{DC}=\frac{AI}{AC}\)(1)
Xét tg BCD, có: FI // DC
\(\Rightarrow\frac{FI}{DC}=\frac{IB}{BD}\)(2)
Xét tg ABI, có: AB // CD
\(\Rightarrow\frac{AI}{AC}=\frac{IB}{BD}\) (3)
Từ (1);(2);(3) \(\Rightarrow\frac{IE}{DC}=\frac{IF}{DC}\Rightarrow IE=IF\)
b) Xét tg ACD, EI // DC
=> EI/DC = AE/ AD (1)
Xét tg ADB, EI // AB
=> EI/AB = DE/AD (2)
Từ (1);(2) => \(\frac{EI}{DC}+\frac{EI}{AB}=\frac{AE}{AD}+\frac{DE}{AD}=1\)
\(\Rightarrow EI.\left(\frac{1}{DC}+\frac{1}{AB}\right)=1\Rightarrow\frac{1}{EI}=\frac{1}{DC}+\frac{1}{AB}\)
cmtt, t/có: \(\frac{1}{FI}=\frac{1}{DC}+\frac{1}{AB}\)
\(\Rightarrow\frac{1}{EI}=\frac{1}{FI}=\frac{1+1}{EI+FI}=\frac{2}{EF}=\frac{1}{AB}+\frac{1}{CD}\)
Gọi H là trung điểm DC.
Chứng minh HE// IF( vì cùng //BC)
=> HE vuông FK ( vì FK vuông IF)
Tương tự HF// EI( vì cùng //AD)
=> HF vuông EK( vì EK vuông IE)
Xét tam giác EFH có EK và FK là 2 đường cao nên K là trực tâm. Suy ra HK vuông FE mà FE //DC nên HK vuông DC tại H suy ra tam giác KDC cân tại K. Nên KD=KC
a, ABCD là hình thang (gt) => AB // CD (đn)
=> OA/OC = OB/OD (talet) (1)
có AF // BC (gt) => FO/OB = AO/OC (talet) ; có BE // AD (gt) => OE/OA = OB/OD (talet) và (1)
=> FO/OB = OE/OA ; xét tg AOB
=> FE // AB (talet đảo)
b, có DA // BE (Gt) ; ^DAO slt ^OEB ; ^ADO slt ^OBE
=> ^DAO = ^OEB và ^ADO = ^OBE (đl)
xét tg ADO và tg EBO
=> tg ADO đồng dạng với tg EBO (g-g)
=> AO/OE = DO/OB (2)
+ AB // FE (câu a) => AO/OE = AB/EF (talet) ; có AB // DC (Câu a) => DO/OB = CD/AB (talet) và (2)
=> AB/EF = CD/AB
=> AB^2 = EF.CD
c, kẻ AH _|_ BD ; CK _|_ BD
có S1 = OB.AH/2 ; S2 = OD.CK/2 => S1.S2 = OB.AH.OD.CK/4
CÓ S3 = AH.DO/2 ; S4 = CK.OB/2 => C3.C4 = OB.AH.OD.CK/4
=> S1.S2 = S3.S4