K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7. Cho đường tròn tâm O đường kính AB = 53 cm . C là một điểm trên đường tròn sao cho AC = 45 cm . Gọi H là hình chiếu của C trên AB . Tính BC , AH , BH , CH và OH . 8. Cho hình thang cân ABCD có đáy lớn AB = 15 cm , đáy nhỏ CD = 5 cm và góc A bằng 60 ° . a ) Tính cạnh BC . b ) Gọi M , N lần lượt là trung điểm của AB và CD , Tỉnh MN .9 , Cho tứ giác ABCD có AI ACAD 20 cm , ốc B bằng ( 6 ) " VỀ VỐc A bằng , ly , a ) Tính đường chéo...
Đọc tiếp

7. Cho đường tròn tâm O đường kính AB = 53 cm . C là một điểm trên đường tròn sao cho AC = 45 cm . Gọi H là hình chiếu của C trên AB . Tính BC , AH , BH , CH và OH .

 8. Cho hình thang cân ABCD có đáy lớn AB = 15 cm , đáy nhỏ CD = 5 cm và góc A bằng 60 ° . a ) Tính cạnh BC . b ) Gọi M , N lần lượt là trung điểm của AB và CD , Tỉnh MN .

9 , Cho tứ giác ABCD có AI ACAD 20 cm , ốc B bằng ( 6 ) " VỀ VỐc A bằng , ly , a ) Tính đường chéo BD , b ) Tính khoảng cách B và DK từ hai điểm B và D đến AC . c ) Tính HK , d ) Vẽ BE vuông gốc với DC kéo dài . Tính BE , CE , DC

10. Cho đoạn thẳng AB 2a . Từ trung điểm 0 của AB về Ox vuông vỐC với AB . Trên 9x a lấy điểm D sao cho OD Tu B ve BC 2 vuông góc với AD kéo dài , a ) Tính AD , AC và BC theo a , b ) Kéo dài DO một đoạn OE = a , Chứng minh bốn điểm A , C , B , E cùng nằm trên một đường tròn . c ) Vẽ đường vuông góc với BC tại B cắt CE tại F. Tính BF . d ) Gọi P là giao điểm của AB và CE , Tính AP và BP .

11.Cho tam giác ABC cân tại A có BC 16 cm , AH = 6 cm . Về điểm D trên đoạn BH sao cho BD = 3,5 cm . Chứng minh rằng tam giác DAC vuông .

0
11 tháng 11 2018

@ Trần Ngọc Huyền @  Em lần sau nhớ chia bài ra đăng nhiều lần nhé! . 

29 tháng 11 2019

Đồng ý với cô Nguyễn Thị Linh Chi

Đăng nhiều thế mới nhìn đã choáng

NV
14 tháng 7 2021

Do \(AD\perp CD\Rightarrow\) hình thang ABCD vuông tại A và D

\(\Rightarrow\) Tứ giác ABHD là hình chữ nhật (tứ giác có 3 góc vuông)

\(\Rightarrow AD=BH\) \(\Rightarrow BH=CD\)

Xét hai tam giác vuông BCH và CKD có:

\(\left\{{}\begin{matrix}BH=CD\\DK=CH\end{matrix}\right.\) \(\Rightarrow\Delta BCH=\Delta CKD\left(c.g.c\right)\) (1)

\(\Rightarrow\widehat{DCK}=\widehat{HBC}\)

\(\Rightarrow\widehat{BCK}=\widehat{BCH}+\widehat{DCK}=\widehat{BCH}+\widehat{HBC}=90^0\)

\(\Rightarrow BC\perp CK\)

b. Cũng từ (1) ta suy ra \(CB=CK\)

Áp dụng hệ thức lượng trong tam giác vuông ECK với đường cao CD:

\(\dfrac{1}{CD^2}=\dfrac{1}{CE^2}+\dfrac{1}{CK^2}=\dfrac{1}{CE^2}+\dfrac{1}{CB^2}\) (đpcm)

NV
14 tháng 7 2021

undefined