K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

loading...

=5*SABCD=5*40=200cm2

10 tháng 9 2020

Nối M với C; N với D; P với A và Q với B

Nối A với C; B với D

Ta có S(ABCD)=S(ABD)+S(BCD)=S(ABC)+S(ACD)

Xét tg ABQ và tg ABD có chung đường cao hạ từ B xuống DQ và cạnh đáy AQ=AD nên S(ABQ)=S(ABD) 

Xét tg ABQ và tg BMQ có chung đường cao hạ từ Q xuống AM và cạnh đáy AB=BM nên S(ABQ)=S(BMQ) 

=> S(ABQ)=S(BMQ)=S(ABD) => S(AMQ)=S(ABQ)+S(BMQ)=2xS(ABD) (1)

Chứng minh tương tự khi xét các tam giác BCD với tg CDN và tg CDN với tg DNQ => S(CNP)=2xS(BCD) (2)

Từ (1) và (2) => S(AMQ)+S(CNP)=2xS(ABD)+2xS(BCD)=2x[S(ABD)+S(BCD)]=2xS(ABCD)

Chứng minh tương tự ta sẽ có kết quả S(DPQ)+S(CMN)=2x[S(ACD)+S(ABC)]=2xS(ABCD)

S(MNPQ)=[S(AMQ)+S(CNP)]+[S(DPQ)+S(CMN)]+S(ABCD)=5xS(ABCD)=5x25=125 cm2 

loading...

=>\(S_{MNPQ}=S_{MBN}+S_{NCP}+S_{PDQ}+S_{QMA}+S_{ABCD}\)

\(=5\cdot S_{ABCD}=5\cdot25=125\left(cm^2\right)\)

AB=BM

nên \(S_{QAB}=S_{QBM}\)

DA=AQ

=>\(S_{BDA}=S_{BAQ}\)

=>\(S_{QAM}=2\cdot S_{ABD}\)

Tương tự, ta được: \(S_{MBN}=2\cdot S_{ABC};S_{NCP}=2\cdot S_{BCD};S_{PDQ}=2\cdot S_{ADC}\)

=>\(S_{MNPQ}=5\cdot S_{ABCD}=300\left(cm^2\right)\)

15 tháng 6 2021

Cho hình thang ABCD có diện tích = 60m2, kéo dài BC 1 đoạn BE= ab, kéo dài BC 1 đoạn CG= BC, kéo dài Cd 1 đoạn Dh = CD. kéo dài DA 1 đoạn AK= AD. Tính diện tchs hình tứ giác ABCD

20 tháng 3 2017

kẻ ac và bd có tâm là o

xét tam giác aek và ado thì đấy  = nhau , chiều cao aek gấp đôi chiều cao adb

aek có diện tích gấp đôi  adb

 tương tự khd gấp đôi bcd

như vậy kae +dhk = 30 x 2 =60 m2

tương tự như vậy thì bge +ghc =60 m2 

diện tích tứ giác eghk =60 +60 +30 =150 m2

ds 150 m2

chúc bạn học giỏi

29 tháng 4 2018

ra 150 m2

20 tháng 1 2017

chịu lên mạng có giải được đâu khó lắm  , nếu biết cách làm nho chi nhe

24 tháng 2 2017

150 m2 nhé