Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dài lắm
Đặt AB = m, MC = MD = n.
a) Do AB // CD, ta có : (1) (2)Từ (1) và (2) suy ra = . Từ đó theo định lí đảo của định lí Ta - lét đối với tam giác MAB, ta có IK // AB....a, MC // AB => MC/AB = MF/FB (hệ quả)
MB // AB => BM/AB = ME/EA (hệ quả)
Có BM = CM do M là trung điểm của BC (gt)
=> MF/FB = ME/EA
=> EF // AB
b, có HF // BM => AE/EM = HE/BM (hệ quả)
EF // MC => AE/EM = EF/MC (hệ quả)
BM = MC (Câu a)
=> HE = EF (1)
có EF // BM => EF/BM = BF/FM (hệ quả)
FN // MC => FN/MC = FB/FM (hệ quả)
BM = CM (Câu a)
=> EF = FN và (1)
=> HE = EF = FN
Trước hết, ta chứng minh EF // AB //CD.
Gọi M là trung điểm của AD.
Ta thấy ngay theo tính chất đường trung bình trong tam giác : EN // AB, NF // DC //AB
Vậy nên N, E, F thẳng hàng hay EF // AB // CD.
Gọi M là trung điểm DC.
Xét tam giác ACD có F là trung điểm AC, M là trung điểm DC nên MF là đường trung bình.
Vậy thì MF // AD. Lại có EI vuông góc AD nên EI vuông góc MF.
Tương tự : IF vuông góc EM.
Xét tam giác EFM có \(EI\perp MF,IF\perp EM\) nên I là trực tâm giác giác.
Vậy thì \(MI\perp EF\)
Lại có EF // DC nên \(MI\perp DC\)
Xét tam giác DIC có IM là trung tuyến đồng thời đường cao nên DIC là tam giác cân tại I.
Vậy thì ID = IC.