K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2016

a/ AB //CD (với AB < CD) phân giác góc ngoài tại và D cắt nhau tại M, --> AM vuông góc MD (phân giác của hai góc bù nhau), AM kéo dài cắt DC tại Q Trong tg AQD có DM phân giác và đường cao --> 
tg ADQ cân ại D --> M trung điểm AQ 
--> tương tự BN và BN vuông góc CN và BN kéo dài cắt DC tại R --> tg BCR cân tại C và N trung điểm BR --> MN đườn trung bình của tg của hình thang ABRQ --> MN // AB --> MN // CD 
b/ Trong hình hang ARBQ có 2MN = AB + QR (MN đường trung bình của hình thang ARBQ) 
--> 16 = AB + QD + CD + CP = AB + AD + CD + BC ( vì QD = AD, CR = BC) 
--> Chu vi hình thang = 16 cm

25 tháng 9 2016

a) MN // với CD nha các bạn

22 tháng 9 2018

Ai biết giải hộ mình với.Mình đang cần gấp ạ

8 tháng 7 2022

a)  Gọi M và N lần lượt là giao điểm của AE, BF với CD.

Ta có: A D E ^ = 1 2 D ^  ngoài, D A E ^ = 1 2 A ^  ngoài.

Mà A ^  ngoài + D ^  ngoài = 1800 (do AB//CD)

⇒   A D E ^ + D A E ^ = 90 0 , tức là tam giác ADE vuông tại E.

Khi đó, tam giác ADM cân tại D (do có DE vừa là đường phân giác, vừa là đường cao) và E là trung điểm của AM.

Chứng minh tương tự, ta được F olaf trung điểm của BN.

Từ khó, suy ra EF là đường trung bình của hình thang ABNM và ta được ĐPCM

b) Từ ý a),  EF = 1 2 ( A B + B C + C D + D A )

16 tháng 10 2022

a: 

góc AMD=180 độ-góc MAD-góc MDA

\(=180^0-\dfrac{180^0-\widehat{BAD}}{2}-\dfrac{180^0-\widehat{ADC}}{2}\)

\(=180^0-\dfrac{1}{2}\widehat{ADC}-90^0+\dfrac{1}{2}\widehat{ADC}=90^0\)

Gọi giao của AM với DC là M'

Xét ΔDM'A có

DM là đường cao, là đường phân giác

nên ΔDM'A cân tại D

=>M là trung điểm của AM'

Gọi giao của BN với DC là N'

Ta có: \(\widehat{BNC}=180^0-\widehat{NBC}-\widehat{NCB}\)

\(=180^0-\dfrac{180^0-\widehat{ABC}}{2}-\dfrac{180^0-\widehat{BCD}}{2}\)

\(=180^0-90^0+\dfrac{1}{2}\widehat{ABC}-90^0+\dfrac{1}{2}\widehat{BCD}\)

=90 độ

Xét ΔCN'B có

CN vừa là đường cao, vừa là phân giác

nên ΔCN'B cân tại C

=>N là trug điểm của BN'

Xét hình thang ABN'M' có

M,N lần lượt là trung điểm của AM' và BN'

nen MN là đường trung bình

=>MN//CD//AB

b: MN=(AB+M'N')/2

=(AB+M'D+CD+CN')/2

mà M'D=AD và CN'=CB

nên MN=(AB+CD+AD+CB)/2

8 tháng 7 2022

a)  Gọi M và N lần lượt là giao điểm của AE, BF với CD.

Ta có: A D E ^ = 1 2 D ^  ngoài, D A E ^ = 1 2 A ^  ngoài.

Mà A ^  ngoài + D ^  ngoài = 1800 (do AB//CD)

⇒   A D E ^ + D A E ^ = 90 0 , tức là tam giác ADE vuông tại E.

Khi đó, tam giác ADM cân tại D (do có DE vừa là đường phân giác, vừa là đường cao) và E là trung điểm của AM.

Chứng minh tương tự, ta được F olaf trung điểm của BN.

Từ khó, suy ra EF là đường trung bình của hình thang ABNM và ta được ĐPCM

b) Từ ý a),  EF = 1 2 ( A B + B C + C D + D A )

16 tháng 10 2022

a: 

góc AMD=180 độ-góc MAD-góc MDA

\(=180^0-\dfrac{180^0-\widehat{BAD}}{2}-\dfrac{180^0-\widehat{ADC}}{2}\)

\(=180^0-\dfrac{1}{2}\widehat{ADC}-90^0+\dfrac{1}{2}\widehat{ADC}=90^0\)

Gọi giao của AM với DC là M'

Xét ΔDM'A có

DM là đường cao, là đường phân giác

nên ΔDM'A cân tại D

=>M là trung điểm của AM'

Gọi giao của BN với DC là N'

Ta có: \(\widehat{BNC}=180^0-\widehat{NBC}-\widehat{NCB}\)

\(=180^0-\dfrac{180^0-\widehat{ABC}}{2}-\dfrac{180^0-\widehat{BCD}}{2}\)

\(=180^0-90^0+\dfrac{1}{2}\widehat{ABC}-90^0+\dfrac{1}{2}\widehat{BCD}\)

=90 độ

Xét ΔCN'B có

CN vừa là đường cao, vừa là phân giác

nên ΔCN'B cân tại C

=>N là trug điểm của BN'

Xét hình thang ABN'M' có

M,N lần lượt là trung điểm của AM' và BN'

nen MN là đường trung bình

=>MN//CD//AB

b: MN=(AB+M'N')/2

=(AB+M'D+CD+CN')/2

mà M'D=AD và CN'=CB

nên MN=(AB+CD+AD+CB)/2

=>CABCD=8cm

16 tháng 10 2022

a: 

góc AMD=180 độ-góc MAD-góc MDA

\(=180^0-\dfrac{180^0-\widehat{BAD}}{2}-\dfrac{180^0-\widehat{ADC}}{2}\)

\(=180^0-\dfrac{1}{2}\widehat{ADC}-90^0+\dfrac{1}{2}\widehat{ADC}=90^0\)

Gọi giao của AM với DC là M'

Xét ΔDM'A có

DM là đường cao, là đường phân giác

nên ΔDM'A cân tại D

=>M là trung điểm của AM'

Gọi giao của BN với DC là N'

Ta có: \(\widehat{BNC}=180^0-\widehat{NBC}-\widehat{NCB}\)

\(=180^0-\dfrac{180^0-\widehat{ABC}}{2}-\dfrac{180^0-\widehat{BCD}}{2}\)

\(=180^0-90^0+\dfrac{1}{2}\widehat{ABC}-90^0+\dfrac{1}{2}\widehat{BCD}\)

=90 độ

Xét ΔCN'B có

CN vừa là đường cao, vừa là phân giác

nên ΔCN'B cân tại C

=>N là trug điểm của BN'

Xét hình thang ABN'M' có

M,N lần lượt là trung điểm của AM' và BN'

nen MN là đường trung bình

=>MN//CD//AB

b: MN=(AB+M'N')/2

=(AB+M'D+CD+CN')/2

mà M'D=AD và CN'=CB

nên MN=(AB+CD+AD+CB)/2

=>CABCD=14cm

16 tháng 10 2022

a: 

góc AMD=180 độ-góc MAD-góc MDA

\(=180^0-\dfrac{180^0-\widehat{BAD}}{2}-\dfrac{180^0-\widehat{ADC}}{2}\)

\(=180^0-\dfrac{1}{2}\widehat{ADC}-90^0+\dfrac{1}{2}\widehat{ADC}=90^0\)

Gọi giao của AM với DC là M'

Xét ΔDM'A có

DM là đường cao, là đường phân giác

nên ΔDM'A cân tại D

=>M là trung điểm của AM'

Gọi giao của BN với DC là N'

Ta có: \(\widehat{BNC}=180^0-\widehat{NBC}-\widehat{NCB}\)

\(=180^0-\dfrac{180^0-\widehat{ABC}}{2}-\dfrac{180^0-\widehat{BCD}}{2}\)

\(=180^0-90^0+\dfrac{1}{2}\widehat{ABC}-90^0+\dfrac{1}{2}\widehat{BCD}\)

=90 độ

Xét ΔCN'B có

CN vừa là đường cao, vừa là phân giác

nên ΔCN'B cân tại C

=>N là trug điểm của BN'

Xét hình thang ABN'M' có

M,N lần lượt là trung điểm của AM' và BN'

nen MN là đường trung bình

=>MN//CD//AB

b: MN=(AB+M'N')/2

=(AB+M'D+CD+CN')/2

mà M'D=AD và CN'=CB

nên MN=(AB+CD+AD+CB)/2

=>CABCD=14cm

23 tháng 9 2019

Gọi trung điểm của AD là P

       trung điểm của BC là Q

=>PQ là đường trung bình của hình thang ABCD

=>MN//DC

Lại có góc ngoài của góc A và D kề nhau

=> hai tia phân giác của góc này hợp với nhau 1 góc 90 độ => góc M =90 độ

Tương tự có góc N =90 độ

Xét tam giác AMD có góc M =90 độ

                                       P là trung điểm của AD 

=> MP=PA=> tam giác MPA cân ở P => Góc MAP = góc AMP => MP//AB

Tương tự có QN//AB

mà MN//AB =>M, P, Q, N thẳng hàng 

=>mn//\ba.  Mà BA//DC => MN//DC

      

23 tháng 9 2019

Bạn cho mình hỏi, ở đoạn suy ra PQ là đường trung bình của hình thang ABCD, rồi suy ra MN //DC là sao? Nếu đã suy ra được rồi thì cần gì phải chứng minh đoạn dưới nữa. Ở phần đó, bạn có viết nhầm hay không? Bạn giải thích giúp mình với

8 tháng 11 2017

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

22 tháng 10 2018

bạn ấy muốn hỏi bài chứ bạn ấy không muốn xin nôi quy bạn ơi