Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hình thang ABCD có
M là trung điểm của AD
N là trung điểm của bC
Do đó: MN là đường trung bình
=>MN//AB//CD và MN=(AB+CD)/2
Xét ΔADC có
AM/MD=AP/PC
nên MP//DC
=>M,N,P thẳng hàng(1)
Xét ΔBDC có
BQ/QD=BN/NC
nên QN//DC
=>M,N,Q thẳng hàng(2)
Từ (1) và (2) suy ra M,N,P,Q thẳng hàng
\(MN=\dfrac{AB+CD}{2}=5\left(cm\right)\)
Giải thích các bước giải:
a/ Trong ΔABCΔABC có N,PN,P lần lượt là trung điểm của BC,ACBC,AC
⇒ NPNP là đường trung bình ΔABCΔABC
⇒ NP//AB//CDNP//AB//CD (1)
Trong ΔBCDΔBCD có N,QN,Q lần lượt là trung điểm của BC,BDBC,BD
⇒ NQNQ là đường trung bình ΔBCDΔBCD
⇒ NQ//CD//ABNQ//CD//AB (1)
Trong hình thang ABCDABCD có M,NM,N lần lượt là trung điểm của AD,BCAD,BC
⇒ MNMN là đường trung bình hình thang ABCDABCD
⇒ MN//AB//CDMN//AB//CD (3)
Từ (1) (2) và (3) suy ra: M,N,P,QM,N,P,Q thằng hàng
Hay M,N,P,QM,N,P,Q nằm trên một đường thẳng
b/ Vì MNMN là đường trung bình thang ABCDABCD
nên MN=AB+CD2=a+b2MN=AB+CD2=a+b2
Ta có: NPNP là đường trung bình ΔABCΔABC
⇒ NP=AB2=a2NP=AB2=a2
Ta lại có: NQNQ là đường trung bình ΔBCDΔBCD
⇒ NQ=CD2=b2NQ=CD2=b2
Vì a>b nên PQ=NP−NQ=a2−b2=a−b2PQ=NP−NQ=a2−b2=a−b2
c/ Ta có: MN=MP+PQ+QNMN=MP+PQ+QN
⇒a+b2=3.a−b2⇒a+b2=3.a−b2
⇒a+b=3a−3b⇒a+b=3a−3b
⇒3a−a=b+3b⇒3a−a=b+3b
⇒2a=4b⇒2a=4b
⇒a=2b⇒a=2b
Chúc bạn học tốt !!!
^HT^
a) hình thang ABCD có :
AM = MD ( gt )
BN = NC ( gt )
\(\Rightarrow\)MN - đtb httg ABCD
\(\Rightarrow\)MN // AB // CD ( 1 )
t/g ABD có :
AM = MD ( gt )
BQ = QD ( gt )
\(\Rightarrow\)MQ - đtb t/g ABD
\(\Rightarrow\)MQ // AB ( 2 )
t/g ACD có :
AM = MD ( gt )
AP = PC ( gt )
\(\Rightarrow\)MP - đtb t/g ACD
\(\Rightarrow\)MP // CD ( 3 )
Từ ( 1 ) ; ( 2 ) ; ( 3 ) suy ra M , N , P , Q thẳng hàng
b) \(MP=\frac{CD}{2}\) ( Vì MP - đtb t/g ACD )
\(MQ=\frac{AB}{2}\) ( Vì MQ - đtb t/g ABD )
\(\Rightarrow\)\(MP-MQ=\frac{CD-AB}{2}\)
\(\Rightarrow\)\(PQ=\frac{CD-AB}{2}\)
Trước tiên kẻ AM cắt CD tại I
Ta xét tam giác AMB và IMD
Hai tam giác đó bằng nhau vì MB=MD (gt) và góc AMB=IMD (đđ) và góc ABM=IDM (so le trong vì AB//CD)
Vì vậy mà AB=ID và MA=MI
Xét tam giác AIC có MA=MI và NA=NC nên MN là đường trung bình của tam giác AIC nên MN//CI và MN=(1/2)CI
Do CI=CD-ID cũng như CI=CD-AB (do AB=ID cmt) và MN=(1/2)CI
nên MN=(1/2)(CD-AB)