K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2019

Giải bài 59 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8

Gọi KO cắt AB, CD lần lượt tại M, N.

ΔKDN có AM // DN (A ∈ KD, M ∈ KN) ⇒ Giải bài 59 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8 (Hệ quả định lý Ta-let)

ΔKCN có BM // CN (M ∈ KN, B ∈ KC) ⇒ Giải bài 59 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8 (Hệ quả định lý Ta-let)

Giải bài 59 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8

ΔOCN có AM // NC (A ∈ OC, M ∈ ON) ⇒ Giải bài 59 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8 (Hệ quả định lý Ta-let)

ΔODN có MB // ND (M ∈ ON, B ∈ OD) ⇒ Giải bài 59 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8 (Hệ quả định lý Ta-let)

Giải bài 59 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8

Từ (1) và (2) suy ra Giải bài 59 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8 ⇒ CN = DN ⇒ AM = MB

Vậy M, N là trung điểm AB, CD.

22 tháng 4 2017
Vẽ đường thẳng EF đi qua O và song song CD.
Ta có EO//DC ⇒ OE/DC = AO/AC (1)
OF//DC ⇒ OF/DC = BO/BD (2)
Ta có: AB//DC ⇒ OA/OC = OB/OD
⇒ OA/ (OC + OA) = OB/(OD+ OB) ⇒ OA/AC = OB/BD (3)
Từ (1),(2),(3) ta có OE/DC = OF/DC ⇒ OE = OF
Ta có AB//EF
⇒ AN/EO = KN/KO và BN/FO = KM/KO
⇒ AN/EO = BN/FO ⇒ AN = BN
Tương tự: FE//DC ⇒ EO/DM = KO/KM
và FO/CM = KO/KM ⇒EO/DM=FO/CM ⇒ DM=CM
suy ra đường thẳng OK đi qua trung điểm của các cạnh AB và CD.
12 tháng 7 2017

Bạn xem lại đề có phải là hình thang cân không bạn?

Bài 2: 

Xét ΔADC có OM//DC

nen OM/DC=AM/AD(1)

Xét ΔBDC có ON//DC

nên ON/DC=BN/BC(2)

Xét hình thag ABCD có MN//AB//CD
nên AM/AD=BN/BC(3)

Từ (1) (2)và (3) suy ra OM=ON

19 tháng 4 2020

A B C D N K M O

Gọi KO cắt AB, CD lần lượt tại M, N.

ΔKDN có AM // DN (A ∈ KD, M ∈ KN) ⇒ \(\frac{AM}{DN}=\frac{KM}{KN}\)( hệ quả của định lí Talet )

ΔKCN có BM // CN (M ∈ KN, B ∈ KC) ⇒ \(\frac{MB}{NC}=\frac{KM}{KN}\)( hệ quả của định lí Talet )

\(\Rightarrow\frac{AM}{DN}=\frac{BM}{CN}\Rightarrow\frac{AM}{BM}=\frac{DN}{CN}\left(1\right)\)

.ΔOCN có AM // NC (A ∈ OC, M ∈ ON) ⇒ \(\frac{AM}{CN}=\frac{ON}{CN}\)( hệ quả của định lí Talet )

ΔODN có MB // ND (M ∈ ON, B ∈ OD) ⇒ \(\frac{MB}{ND}=\frac{OM}{ON}\)( hệ quả của định lí Talet )

\(\Rightarrow\frac{AM}{CN}=\frac{BM}{ND}\Rightarrow\frac{AM}{BM}=\frac{CN}{DN}\left(2\right)\)

Từ (1)(2) , suy ra :

\(\frac{DN}{CN}=\frac{CN}{DN}\Rightarrow CN=DN\Rightarrow AM=MB\)

Vậy M, N là trung điểm AB, CD.

a: Xét ΔOAB và ΔOCD có

\(\widehat{OAB}=\widehat{OCD}\)(hai góc so le trong, AB//CD)

\(\widehat{AOB}=\widehat{COD}\)(hai góc đối đỉnh)

Do đó: ΔOAB\(\sim\)ΔOCD

=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)

=>\(\dfrac{OC}{OA}=\dfrac{OD}{OB}\)

=>\(\dfrac{OC}{OA}+1=\dfrac{OD}{OB}+1\)

=>\(\dfrac{OC+OA}{OA}=\dfrac{OD+OB}{OB}\)

=>\(\dfrac{AC}{OA}=\dfrac{BD}{OB}\)

=>\(\dfrac{OA}{AC}=\dfrac{OB}{BD}\)(2)

b: Xét ΔCAD có OE//AD

nên \(\dfrac{DE}{DC}=\dfrac{AO}{AC}\)(1)

Xét ΔBDC có OF//BC

nên \(\dfrac{CF}{CD}=\dfrac{BO}{BD}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\dfrac{DE}{DC}=\dfrac{CF}{CD}\)

=>DE=CF

 

15 tháng 7 2017

đề phải là AC cắt BD chứ

ta dùng định lí ta lét

15 tháng 7 2017

Dùng như thế nào vậy vũ tiền châu