K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ABDC có

I là trung điểm của BC

I là trung điểm của AD

Do đó: ABDC là hình bình hành

b: Xét ΔABC có 

BF là đường cao

CE là đường cao

BF cắt CE tại H

Do đó: H là trực tâm của ΔABC

hay AH⊥BC

4 tháng 7 2019

A B C D E

CM: a) Xét t/giác ABH và t/giác DBE

có: \(\widehat{AHB}=\widehat{DEB}=90^0\) (gt)

  AB = BD (gt)

    \(\widehat{ABH}=\widehat{EBD}\) (đối đỉnh)

=> t/giác ABH = t/giác DBE (ch - gn)

=> BE = BH (2 cạnh t/ứng)

b)  Xét t/giác ABE và t/giác DBH

có: AB = BD (gt)

   \(\widehat{ABE}=\widehat{HBD}\) (đối đỉnh)

  EB = BH (cmt)

=> t/giác ABE = t/giác DBH (c.g.c)

=> \(\widehat{AEB}=\widehat{BHD}\) (2 góc t/ứng)

Mà 2 góc này ở vị trí so le trong

=> AE // DH (Đpcm)

c) Ta có: AB + BD = AD

=> AD = 2.AB = 2.3 = 6 (cm) (vì AB = BD)

Áp dụng bất đẳng thức t/giác , ta có:

|AD - AC| <  CD < |AD + AC|

=> |6 - 3| < CD < |6 + 3|

=> |3| < CD < |9|

=> 3 < CD < 9

=> CD \(\in\){4; 5; 6; 7; 8}