Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Giả sử thiết diện qua trục hình nón là DABC như hình vẽ. Vì DABC cân tại A, góc ở đáy bằng 45 ° nên DABC vuông cân tại A. Gọi O là tâm của đáy ⇒ O A = O B = O C = a , vậy O là tâm mặt cầu ngoại tiếp hình nón, bán kính bằng a → thể tích mặt cầu bằng: 4 3 π a 3
Đáp án D
Phương pháp giải: Xác định độ dài đường sinh qua góc và bán kính, tính diện tích tam giác vuông bằng tích hai cạnh góc vuông
Lời giải: Ta có
Diện tích cần tính là
Đáp án A
Phương pháp:
- Xác định góc giữa mặt phẳng và mặt phẳng.
- Lập tỉ lệ thể tích thông qua tỉ lệ diện tích đáy và tỉ lệ chiều cao.
Cách giải:
Xét hình nón (H) thỏa mãn yêu cầu đề bài, có một thiết diện qua trục là tam giác SAB.
Ta có: SAB cân tại S và là tam giác vuông cân => △ SAB vuông cân tại đỉnh S
Gọi O là trung điểm của AB
Thể tích hình nón (H):
Gọi (P) là một mặt phẳng đi qua đỉnh và tạo với đáy một góc 600 thiết diện của (P) với mặt đáy là tam giác cân SMN.
Gọi I là trung điểm của MN (hiển nhiên I không trùng O), suy ra IO ⊥ MN. Mà SO ⊥ MN
Tam giác SIO vuông tại O
Gọi V0 là thể tích của phần nhỏ hơn. Ta có:
*) Tính diện tích đáy của phần có thể tích nhỏ hơn:
Diện tích hình tròn
Đặt
Đổi cận:
Phương pháp:
Sử dụng mối quan hệ góc giữa hai đường thẳng, góc giữa đường thẳng và mặt phẳng.
Sử dụng tính chất hình nón, tính chất tam giác vuông cân.
Cách giải:
Hình nón đỉnh S có thiết diện đi qua đỉnh là tam giác vuông cân SAB khi đó xét tam giác vuông SHB có đường cao