Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi H là giao điểm của ED và BC
=> SABHE=\(\dfrac{\left(AB+EH\right).BH}{2}=\dfrac{\left(3+6\right).4}{2}=18\left(cm^2\right)\)
Shình vuông DHC= \(\dfrac{DH.CH}{2}=\dfrac{2.1}{2}=1\left(cm^2\right)\)
Áp dụng định lí Py -ta go trong tam giác vuông EKA
EA=\(\sqrt{EK^2+KA^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)
Trong tam giác vuông FEA có FE=FA => \(EF^2=\dfrac{25}{2}\)
=> SFEA=(FE.FA)/2=\(\dfrac{25}{2}:2=\dfrac{25}{4}\left(cm^2\right)\)
vậy S lục giác đã cho = SABHE+ SFEA- Shình vuông DHC=18+\(\dfrac{25}{4}-1=\dfrac{93}{4}\left(cm^2\right)\)
Nhớ tick nha ,đánh quẹo cả tay,em cảm ơn trước ak
a) Xét 2∆: ABC và HAB có
+ ∠BAC = 900(gt); ∠BHA = 900 (AH ^ BH) => ∠BAC= ∠BHA
+ ∠ABC = ∠ BAH (so le)
=> ∆ABC ~ ∆HAB
b) Xét 2∆: HAB và KCA có:
+ ∠CKA = 900 (CK ^ AK) => ∠AHB = ∠CKA
+ ∠CAK + ∠BAH = 900(do ∠BAC = 900), ∠BAH + ∠ABH = 900 (∆HAB vuông ở H) =>
∠CAK = ∠ABH
=> ∆HAB ~ ∆KCA
=> AH.AK = BH.CK
c) có: ∆ABC ~ ∆HAB (c/m a)
Ta có: + AH // BC
+ MA + MB = AB => MA + MB = 3cm
=> 34/25MB = 3
=> MB = 75/34cm
+ Diện tích ∆MBC là
S =1/2.AC.MB=75/17
a: Xét ΔBED vuông tại E và ΔBAC vuông tại A có
góc B chung
=>ΔBED đồng dạng vơi ΔBAC
b: Xet ΔCAB co FD//AB
nên DB/DC=FA/FC
Gọi H là giao điểm của hai đường thẳng ED và BC. Khi đó, ABHE là hình thang và tính được diện tích của nó là
S 1 = 1/2 (AB + EH).BH = 1/2 (3 + 6).4 = 18( c m 2 ).
Diện tích của tam giác vuông DHC là
S 2 = 1/2 DH.CH = 1/2.2.1 = 1( c m 2 ).
Trong tam giác vuông AKE tính được EA = 5 (cm).
Trong tam giác vuông FEA có FE = FA suy ra E F 2 = 25/2.
Từ đó diện tích của tam giác FAE là S 3 = 25/4 c m 2
Vậy diện tích của lục giác đã cho là
S = S 3 + S 1 - S 2 = 25/4 + 18 – 1 = 93/4( c m 2 ).