K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2017

18 tháng 12 2016

Gọi H là hình chiếu vuông góc của A' trên mặt phẳng (ABCD)

Kẻ HN vuông góc với AB tại N, HM vuông góc với AD tại M

Ta cần tìm chiều cao h=A'H của hình hộp

Dễ dàng chứng minh \(\widehat{A'NH}=60^0\)\(\widehat{A'MH}=45^0\)

Xét tam giác vuông NHA' và MHB' có

\(NH=\frac{HA'}{tan\widehat{HNA'}}=\frac{h}{\sqrt{3}}\)\(MH=\frac{HA'}{tan\widehat{HMA'}}=h\)

Xét hình vuông AMHN có \(AH=\sqrt{HN^2+HM^2}=\frac{2h}{\sqrt{3}}\)

Xét tam giác vuông AHA' có \(AH^2+A'H^2=A'A^2\Leftrightarrow h^2+\frac{4}{3}h^2=1\Leftrightarrow h=\sqrt{\frac{3}{7}}\)

Vậy thể tích hình hộp là: \(V=h.\sqrt{3}.\sqrt{7}=\sqrt{\frac{3}{7}}.\sqrt{3}\sqrt{7}=3\)

10 tháng 7 2019

2 tháng 11 2017

20 tháng 6 2017

Đáp án A

28 tháng 12 2019

Đáp án B

Xét lăng trụ (T) có:

Xét mặt cầu (C) có:  R C = A P 2 = a 3

Tỉ số bằng 8 4 3 = 2 3 3

23 tháng 7 2019

Đáp án A

A B C D . A ' B ' C ' D ' nội tiếp khối lăng trụ, ABCD.MNPQ nội tiếp mặt cầu nên

A B C D . A ' B ' C ' D '  là hình hộp chữ nhật

Bán kính đường tròn ngoại tiếp

ABCD là r = 2 a , V T = 4 a . π . 2 a 2 = 8 πa 3  

Bán kính mặt cầu ngoại tiếp ABCD.MNPQ là

Vậy  V ( T ) V ( C ) = 8 πa 3 4 3 πa 3 = 2 3 3

 

21 tháng 5 2019

 

Phương pháp:

Công thức tính thể tích khối hộp chữ nhật ABCD.A'B'C'D'  V = AA'.AB.AD

Cách giải:

 

Ta có:  (định lý Pitago)

Xét tam giác ACC’ vuông tại C ta có:

Chọn C.

9 tháng 7 2019

Chọn A