K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2023

a: ABCD.A'B'C'D là hình hộp chữ nhật

=>AA'//DD'//BB'//CC'

AA'//CC'

=>AA'//(CC'D'D)

B'B//D'D

=>B'B//(CC'D'D)

mà AA'//(CC'D'D)

và A'A và B'B cùng thuộc mp(AA'B'B)

nên (AA'B'B)//(CC'D'D)

b: Xét tứ giác ADC'B' có

AD//B'C'

AD=B'C'

Do đó: ADC'B' là hình bình hành

=>AB'//DC'

=>AB'//(C'BD)(1)

Xét tứ giác BDD'B' có

BB'//DD'

BB'=D'D

Do đó: BDD'B' là hình bình hành

=>BD//B'D'

=>B'D'//(C'BD)(2)

Từ (1) và (2) suy ra (C'BD)//(AB'D')

c: Gọi G là trọng tâm của ΔABC

Xét ΔBAC có

BO là đường trung tuyến

G là trọng tâm

Do đó: B,O,G thẳng hàng và \(BG=\dfrac{2}{3}BO\)

Gọi M là giao điểm của AG với BC; M' là giao điểm của A'G' với B'C'

Xét ΔABC có

G là trọng tâm

M là giao điểm của AG với BC

Do đó: M là trung điểm của BC và \(AG=\dfrac{2}{3}AM\)

Xét ΔA'B'C' có

G' là trọng tâm

A'G' cắt B'C' tại M'
Do đó: M' là trung điểm của B'C'

Xét ΔABM và ΔA'B'M' có

AB=A'B'

\(\widehat{ABM}=\widehat{A'B'M'}\)

BM=B'M'

Do đó: ΔABM=ΔA'B'M'

=>AM=A'M'

Xét hình thang BCC'B' có

M,M' lần lượt là trung điểm của CB,C'B'

=>MM' là đường trung bình

=>MM'//BB'//CC'

=>MM'//AA'

Xét tứ giác AA'M'M có

MM'//AA'

AM=A'M'

Do đó: AA'M'M là hình bình hành

=>AM//A'M'

=>AG//A'G'

=>A'G'//(ABCD)

NV
3 tháng 10 2020

Hướng dẫn:

Gọi P, H lần lượt là trung điểm CD, B'C' \(\Rightarrow\) PMHN là hình chữ nhật

Gọi K, G lần lượt là giao điểm của AC và PM, A'C' là HN \(\Rightarrow\) K, G lần lượt là trung điểm PM và NH

Điểm E chính là giao điểm của MN và KG.

Với việc K, G là trung điểm 2 cạnh đối hcn và MN là đường chéo của hcn thì hiển nhiên E sẽ là trung điểm MN

b.

Do E là trung điểm PG (và MN) nên QE song song AC

Do đó QE, AC', BD' cùng đi qua tâm I của lập phương

c.

Như câu b thì I đồng thời là tâm lập phương

QI đi qua trung điểm E của MN đồng thời \(\frac{QI}{QE}=\frac{AO}{AK}=\frac{2}{3}\) (với O là tâm hình vuông ABCD) nên I là trọng tâm QMN

NV
23 tháng 12 2020

Hướng dẫn: 

Dễ dàng nhận ra A thuộc B'G (vì AB' là đường chéo của hbh mặt bên nên là 1 trung tuyến)

Gọi M, M' lần lượt là trung điểm BC và B'C'

=> (GOB') là (AMB')

(CA'O') là (CA'M')

Có B'M'CM là hình bình hành

A'M'MA cũng là hbh 

Suy ra 2 cặp đường thẳng song song và cắt nhau => đpcm

NV
8 tháng 3 2022

Do \(\left\{{}\begin{matrix}AA'\perp\left(ABCD\right)\Rightarrow AA'\perp AD\\AD\perp AC\left(gt\right)\end{matrix}\right.\) \(\Rightarrow AD\perp\left(AA'C\right)\)

Mà \(AD||A'D'\Rightarrow A'D'\perp\left(AA'C\right)\)

Lại có \(AA'||CC'\Rightarrow C'\in\left(AA'C\right)\Rightarrow A'D'\perp AC'\) (1)

\(\left\{{}\begin{matrix}AA'\perp AC\\AA'=AC\end{matrix}\right.\) \(\Rightarrow\) tứ giác AA'C'C là hình vuông

\(\Rightarrow AC'\perp A'C\) (2)

(1);(2) \(\Rightarrow AC'\perp\left(A'D'C\right)\)

NV
8 tháng 3 2022

undefined

NV
27 tháng 4 2021

\(AH\perp\left(ABCD\right)\Rightarrow\widehat{A'AH}\) là góc giữa AA' và (ABCD) \(\Rightarrow\widehat{A'AH}=60^0\)

\(\Rightarrow AA'=\dfrac{AH}{cos60^0}=a\)

a. Ta có: \(\left\{{}\begin{matrix}A'H\perp\left(ABCD\right)\Rightarrow A'H\perp AD\\AD\perp AB\end{matrix}\right.\) \(\Rightarrow AD\perp\left(ABB'A'\right)\)

Mà \(AD\in\left(ADD'A'\right)\Rightarrow\left(ADD'A'\right)\perp\left(ABB'A'\right)\)

b. Kiểm tra lại đề câu này

Hai mặt phẳng (ABCD) và (A'B'C'D') hiển nhiên song song (theo tính chất lăng trụ) nên góc giữa chúng bằng 0. Do đó thấy ngay \(tan\left(\left(ABCD\right);\left(A'B'C'D'\right)\right)=0\)

Có lẽ không ai bắt tính điều này cả.

c.

\(\left(ABCD\right)||\left(A'B'C'D'\right)\Rightarrow d\left(A;\left(A'B'C'D'\right)\right)=d\left(A';\left(ABCD\right)\right)=A'H=a\)