Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bể thứ nhất :
\(V_1=1,2.x.y\) (m3)
Bể hai :
\(V_2=1,5.2x.2y=6xy\left(m^3\right)\)
2 bể :
\(V=V_1+V_2=1,2xy+6xy=7,2xy\left(m^3\right)\)
Em có thể tham khảo tại đây nhé.
Câu hỏi của Nguyễn Tuấn Minh - Toán lớp 8 - Học toán với OnlineMath
Gọi AH là đường cao của tam giác ABC.
Gọi MNPQ là hình chữ nhật thỏa mãn điều kiện đề bài. Gọi O là tâm hình chữ nhật MNPQ.
Gọi E, F, D, G lần lượt là trung điểm của QM, PN, AH và BC. Khi đó O là trung điểm EF.
Gọi F' là giao điểm của PN và CD. Áp dụng định lý Talet ta có:
\(\frac{PF'}{AD}=\frac{FC}{CD}=\frac{F'N}{DH}\) mà AD = DH nên PF' = F'N hay F' là trung điểm của PN. Vậy F' trùng F hay F thuộc DC. Tương tự E thuộc DB.
Gọi O' là giao điểm của EF với DG. Áp dụng định lý Ta let ta có:
\(\frac{EO'}{BG}=\frac{DO'}{DG}=\frac{O'F}{GC}\) mà BG = GC nên EO' = O'F hay O' là trung điểm EF.
Từ đó suy ra O' trùng O hay O thuộc DG. Do A, B, C cố định nên DG cố định,.
Vậy tâm hình chữ nhật luôn nằm trên đoạn thẳng DG.