Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta NBC\) và \(\Delta FDC\) có:
Góc B = Góc D (=90)
Góc BNC= Góc FCD ( cùng phụ với góc NCB)
=> \(\Delta NBC\approx\Delta FDC\) (gg)
=> \(\dfrac{NB}{BC}=\dfrac{DC}{FD}\) =>\(NB=\dfrac{DC.BC}{FD}=\dfrac{DC.BC}{AB+AD}\left(1\right)\)
Xét \(\Delta MDC\) và \(\Delta EBC\) có:
Góc D = Góc B (=90)
Góc ECB = Góc DMC ( cùng phụ góc MCD)
=> \(\Delta MDC\approx\Delta EBC\) ( gg)
=> \(\dfrac{MD}{DC}=\dfrac{BC}{EB}\) => \(MD=\dfrac{BC.DC}{EB}\) => \(MD=\dfrac{BC.DC}{AB+AD}\)(2) ( do các đoạn bằng )
Từ (1) và (2) => MD=BN(đpcm)
a) Xét tứ giác ADEC có
AD//EC(gt)
AD=EC(gt)
Do đó: ADEC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Suy ra: Hai đường chéo AE và DC cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)
mà AE cắt DC tại M(gt)
nên M là trung điểm chung của DC và AE(đpcm)
b) Xét tứ giác ABEF có
M là trung điểm của đường chéo AE(cmt)
M là trung điểm của đường chéo BF(gt)
Do đó: ABEF là hình bình hành(Dấu hiệu nhận biết hình bình hành)
c) Ta có: AB//DC(gt)
AB//FE(ABEF là hình bình hành)
Do đó: FE//DC(Định lí 3 từ vuông góc tới song song)
Xét ΔDMF và ΔCMB có
MF=MB(gt)
\(\widehat{DMF}=\widehat{CMB}\)(hai góc đối đỉnh)
MD=MC(M là trung điểm của DC)
Do đó: ΔDMF=ΔCMB(c-g-c)
Suy ra: DF=BC(hai cạnh tương ứng)
mà AD=EC(ADEC là hình bình hành)
và AD=BC(ABCD là hình thang cân)
nên DF=EC
Hình thang DCEF(DC//FE) có DF=EC(cmt)
nên DCEF là hình thang cân
a: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
Suy ra: AF//CE
Xét hình tứ giác đấy có:
`=>AE//// CF`
`AE=CF`
Có bốn cạnh như trên suy ra là hình bình hành.
`=>` `AF////CE`
{AD // BCAD = BC AB = CDAB // CD
Vì AD // BC
⇒ AD // BE
Vì {AD = BCBE= BC
⇒ AD = BE
Tứ giác EADB có
{AD // BEAD = BE
⇒ Tứ giác EADB là hình bình hành (đpcm)
b, Vì tứ giác EADB là hình bình hành
⇒ AE // BD (1)
Vì {AB = CDDF = CD
⇒ AB = DF
Vì AB // CD
⇒ AB // DF
Tứ giác ABDF có
{AB = DFAB // DF
⇒ Tứ giác ABDF là hình bình hành
⇒ AF // BD (2)
Từ (1), (2) ⇒ E, A và F thẳng hàng (đpcm)
c, Vì tứ giác EADB là hình bình hành
⇒ AE = BD (3)
Vì tứ giác ABDF là hình bình hành
⇒ AF = BD (4)
Từ (3), (4) ⇒ AE = AF
Vì {AE = AFE, A, F thẳng hàng
⇒ A là trung điểm của EF
⇒ CA là đường trung tuyến của ΔCEF
Vì DC = DF
⇒ D là trung điểm của EF
⇒ ED là đường trung tuyến của ΔCEF
Vì BE = BC
⇒ B là trung điểm của EC
⇒ FB là đường trung tuyến của ΔCEF
Như vậy
{CA là đường trung tuyến của ΔCEF ED là đường trung tuyến của ΔCEFFB là đường trung tuyến của ΔCEF
bạn học đến phần nào rồi
đầu tiên CM được TgEMA =Tg FNC
=>AM=NC
=>TgOME=TgOCN
kẻ OB, OD
CM được TgOMD=TgONC
=>gócBON=gócDOM
=>Đpcm'''
có gi ko hiểu thì hỏi nhá
buồn ngủ quá
Câu thứ nhất sai đề bạn ạ vì ko có tia đối của tia AD
a: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
Suy ra: AF//CE
Tam giác vuông BNC đồng dạng với tam giác vuông DCF (vì góc DCF = góc BNC so le trong)
=> \(\dfrac{BN}{BC}=\dfrac{DC}{DF}=\dfrac{AB}{AB+BC}\)(1)
Tương tự ta cũng được:
\(\dfrac{DM}{BC}=\dfrac{CM}{EC}=\dfrac{AB}{BE}=\dfrac{AB}{AB+BC}\)(2)
Từ (1) và (2) suy ra:
BN=DM (đpcm)