K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
a) + Ta có : ΔADE ∼ ΔDCE ( g.g )
\(\Rightarrow\frac{S_{ADE}}{S_{DCE}}=\frac{AD^2}{CD^2}=\frac{BC^2}{AB^2}\)
+ Ta lại có : \(\frac{S_{ADE}}{S_{DCE}}=\frac{AE}{CE}\Rightarrow\frac{AE}{CE}=\frac{BC^2}{AB^2}\)
b) Gọi I là trung điểm của DE
+ NI là đg trung bình của ΔADE
\(\Rightarrow\left\{{}\begin{matrix}NI//AD\\NI=\frac{1}{2}AD\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}NI//MC\\NI=CM\end{matrix}\right.\)
=> Tứ giác ICMN là hbh
=> MN // CI
+ NI // AD => NI ⊥ CD
+ ΔCND có 2 ddg cao DE và NI cắt nhau tại I
=> I là trực tâm ΔCDN
=> CI ⊥ DN => MN ⊥ DN
+ ΔDMN vuông tại N
\(\Rightarrow DN^2+MN^2=DM^2\)
+ ΔDMC vuông tại C
\(\Rightarrow CD^2+CM^2=DM^2\)
\(\Rightarrow MN^2+DN^2=CD^2+CM^2\)