K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(AB\cdot AN=AC^2\)

\(AD\cdot AM=AC^2\)

=>\(AB\cdot AN=AD\cdot AM\)

b: \(DM=\dfrac{CD^2}{AD}=\dfrac{4^2}{3}=\dfrac{16}{3}\left(cm\right)\)

 

 

c: CB*CD

\(=\dfrac{AC\cdot CN}{AN}\cdot\dfrac{AC\cdot CM}{AM}\)

\(=\dfrac{AC^2\cdot AC^2}{AC\cdot MN}=\dfrac{AC^3}{MN}\)

29 tháng 10 2023

a: ΔABC vuông tại B

=>\(BA^2+BC^2=AC^2\)

=>\(AC^2=4^2+3^2=25\)

=>AC=5(cm)

Xét ΔBAC vuông tại B có BH là đường cao

nên \(BH\cdot AC=BA\cdot BC\)

=>BH*5=3*4=12

=>BH=2,4(cm)

Xét ΔBAC vuông tại B có

\(sinBAC=\dfrac{BC}{AC}=\dfrac{3}{5}\)

=>\(\widehat{BAC}\simeq37^0\)

b: Xét ΔABE vuông tại A có AH là đường cao

nên \(BH\cdot BE=BA^2\)(1)

Xét ΔABC vuông tại B có BH là đường cao

nên \(AH\cdot AC=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(BH\cdot BE=AH\cdot AC\)

c: Xét ΔBHC vuông tại H và ΔBFE vuông tại F có

\(\widehat{HBC}\) chung

Do đó: ΔBHC\(\sim\)ΔBFE

=>\(\dfrac{BH}{BF}=\dfrac{BC}{BE}\)

=>\(\dfrac{BH}{BC}=\dfrac{BF}{BE}\)

Xét ΔBHF và ΔBCE có

BH/BC=BF/BE

\(\widehat{HBF}\) chung

Do đó: ΔBHF\(\sim\)ΔBCE