Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
góc FAD+DAE=90•
DAE+EAB=90•
-> FAD=EAB
xet tam giác AEB và tam giác ADF có
AB=AD( ABCD là hình vuông)
ABE=ADF=90•
FAD=EAB
suy ra tam giac ABE=tam giác ADF(g.c.g)
-> AF=AE
a) Xét \(\Delta\)ABE và \(\Delta\)ADF: AB=AD; ^ABE=^ADF=900; ^BAE=^DAF (Cùng phụ với ^DAE)
=> \(\Delta\)ABE=\(\Delta\)ADF (g.c.g) => AE=AF (2 cạnh tương ứng)
=> \(\Delta\)AEF vuông cân tại A (Do ^EAF=900)
=> Trung tuyến AI của \(\Delta\)AEF đồng thòi là đường trung trực của EF
Ta thấy 2 điểm K và G nằm trên AI nên GE=GF; KE=KF (1)
Lại có: GE//AB hay GE//CD => ^GEF=^KFE. Mà ^KFE=^KEF (Do tam giác EKF cân tại K)
=> ^GEF=^KEF => EF hay EI là đường phân giác ^GEK
Xét \(\Delta\)EGK: EI\(\perp\)GK; EI là phân giác ^GEK => \(\Delta\)EGK cân tại E => EG=EK (2)
Từ (1) và (2) => GE=GF=KE=KF => Tứ giác EKFG là hình thoi (đpcm).
b) Ta có: EF\(\perp\)AK tại I (Dễ chứng minh) => \(\Delta\)FIK ~ \(\Delta\)FCE (g.g)
=> \(\frac{FI}{FC}=\frac{FK}{FE}\)=> FK.FC = FI.FE
Vì tam giác AEF vuông tân tại A và có đường trung tuyến AI => AI=FI
=> FK.FC=AI.EF (đpcm).
c) CECK= CE+CK+EK = CE+CK+FK (Do EK=FK) = CK+CE+DK+DF
Ta có: \(\Delta\)ABE = \(\Delta\)ADF (cmt) => BE=DF => CECK=CK+CE+DK+BE=CD+BC
Mà CD và BC không đổi => CECK không đổi khi E thay đổi trên BC (đpcm).
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
=>AH=DE
b: AI vuông góc với DE tại I
=>\(\widehat{IEA}+\widehat{IAE}=90^0\)
=>\(\widehat{MAC}+\widehat{AED}=90^0\)
=>\(\widehat{MAC}+\widehat{AHD}=90^0\)
=>\(\widehat{MAC}+\widehat{B}=90^0\)
mà \(\widehat{MCA}+\widehat{B}=90^0\)
nên \(\widehat{MAC}=\widehat{MCA}\)
=>MA=MC
\(\widehat{MAB}+\widehat{MAC}=90^0\)
\(\widehat{MCA}+\widehat{B}=90^0\)
mà \(\widehat{MAC}=\widehat{MCA}\)
nên \(\widehat{MAB}=\widehat{MBA}\)
=>MA=MB
=>MB=MC
=>M là trung điểm của BC