K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBDC vuông tại B và ΔHBC vuông tại H có

góc C chung

=>ΔBDC đồng dạng với ΔHBC

b: ΔBDC đồng dạng với ΔHBC

=>BC/HC=DC/BC

=>BC^2=HC*DC

c: Xét ΔAKD vuông tại K và ΔBHC vuông tại H có

AD=BC

góc D=góc C

=>ΔAKD=ΔBHC

d: BD=căn 25^2-15^2=20cm

HC=BC^2/DC=15^2/25=9cm

 

a: Xét ΔBDC vuông tại B và ΔHBC vuông tại H có

\(\widehat{BCD}\) chung

Do đó: ΔBDC~ΔHBC

b: ta có ΔBDC~ΔHBC

=>\(\dfrac{CB}{CH}=\dfrac{CD}{CB}\)

=>\(CB^2=CH\cdot CD\)

c: Xét ΔAKD vuông tại K và ΔBHC vuông tại H có

\(\widehat{ADK}=\widehat{BCH}\)

Do đó;ΔAKD~ΔBHC

d: ΔBDC vuông tại B

=>\(BC^2+BD^2=DC^2\)

=>\(BD^2=25^2-15^2=400\)

=>\(BD=\sqrt{400}=20\left(cm\right)\)

Xét ΔBDC vuông tại B có BH là đường cao

nên \(\left\{{}\begin{matrix}DH\cdot DC=DB^2\\CH\cdot CD=CB^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}DH\cdot25=20^2=400\\CH\cdot25=15^2=225\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}DH=16\left(cm\right)\\CH=9\left(cm\right)\end{matrix}\right.\)

a: Xét ΔBDC vuông tại B và ΔHBC vuông tại H có

\(\widehat{BCD}\) chung

Do đó: ΔBDC~ΔHBC

b: ta có ΔBDC~ΔHBC

=>\(\dfrac{CB}{CH}=\dfrac{CD}{CB}\)

=>\(CB^2=CH\cdot CD\)

c: Xét ΔAKD vuông tại K và ΔBHC vuông tại H có

\(\widehat{ADK}=\widehat{BCH}\)

Do đó;ΔAKD~ΔBHC

d: ΔBDC vuông tại B

=>\(BC^2+BD^2=DC^2\)

=>\(BD^2=25^2-15^2=400\)

=>\(BD=\sqrt{400}=20\left(cm\right)\)

Xét ΔBDC vuông tại B có BH là đường cao

nên \(\left\{{}\begin{matrix}DH\cdot DC=DB^2\\CH\cdot CD=CB^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}DH\cdot25=20^2=400\\CH\cdot25=15^2=225\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}DH=16\left(cm\right)\\CH=9\left(cm\right)\end{matrix}\right.\)

a: Xét ΔBDC vuông tại B và ΔHBC vuông tại H có 

\(\widehat{C}\) chung

Do đo:ΔBDC\(\sim\)ΔHBC

b: Ta có: ΔBDC\(\sim\)ΔHBC

nên BC/HC=DC/BC

hay \(BC^2=HC\cdot DC\) 

a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có

\(\widehat{ABH}=\widehat{BDC}\)

Do đó: ΔAHB\(\sim\)ΔBCD

b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có 

\(\widehat{ADH}\) chung

Do đó: ΔADH\(\sim\)ΔBDA

Suy ra: \(\dfrac{AD}{BD}=\dfrac{HD}{DA}\)

hay \(AD^2=HD\cdot BD\)

19 tháng 5 2022

a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có

ABH^=BDC^

Do đó: ΔAHBΔBCD

b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có 

ADH^ chung

Do đó: ΔADHΔBDA

Suy ra: ADBD=HDDA

hay 

19 tháng 4 2021

19 tháng 4 2021

a, Áp dụng đinh lí Pytago cho tam giác ABC vuông tại A, AH là đường cao 

AB^2 + AC^2 = BC^2

=> BC^2 = 36 + 64 = 100 => BC = 10 cm 

Vì AD là tia phân giác ^A nên ta có : \(\dfrac{AB}{AC}=\dfrac{BD}{DC}\)

mà DC = BC - BD = 10 - BD 

hay \(\dfrac{6}{8}=\dfrac{BD}{10-BD}\Rightarrow BD=\dfrac{30}{7}\)cm 

=> DC = 10 - BD = 10 - 30/7 = 40/7 cm 

b, Xét tam giác ABC và tam giác AHB ta có : 

^BAC = ^AHB = 900

^B chung 

Vậy tam giác ABC ~ tam giác AHB ( g.g )

 

6 tháng 4 2019

sai chỗ áp dụng địch lí pitago

phải hb = CĂN BẬC HAI BC BÌNH - HC BÌNH

a) Xét ΔBDC vuông tại B và ΔHBC vuông tại H có 

\(\widehat{BCH}\) chung

Do đó: ΔBDC\(\sim\)ΔHBC(g-g)

b) Ta có: ΔBDC\(\sim\)ΔHBC(cmt)

nên \(\dfrac{CD}{CB}=\dfrac{CB}{CH}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(BC^2=HC\cdot DC\)(Đpcm)