Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBDC vuông tại B và ΔHBC vuông tại H có
góc C chung
=>ΔBDC đồng dạng với ΔHBC
b: ΔBDC đồng dạng với ΔHBC
=>BC/HC=DC/BC
=>BC^2=HC*DC
c: Xét ΔAKD vuông tại K và ΔBHC vuông tại H có
AD=BC
góc D=góc C
=>ΔAKD=ΔBHC
d: BD=căn 25^2-15^2=20cm
HC=BC^2/DC=15^2/25=9cm
a: Xét ΔBDC vuông tại B và ΔHBC vuông tại H có
\(\widehat{BCD}\) chung
Do đó: ΔBDC~ΔHBC
b: ta có ΔBDC~ΔHBC
=>\(\dfrac{CB}{CH}=\dfrac{CD}{CB}\)
=>\(CB^2=CH\cdot CD\)
c: Xét ΔAKD vuông tại K và ΔBHC vuông tại H có
\(\widehat{ADK}=\widehat{BCH}\)
Do đó;ΔAKD~ΔBHC
d: ΔBDC vuông tại B
=>\(BC^2+BD^2=DC^2\)
=>\(BD^2=25^2-15^2=400\)
=>\(BD=\sqrt{400}=20\left(cm\right)\)
Xét ΔBDC vuông tại B có BH là đường cao
nên \(\left\{{}\begin{matrix}DH\cdot DC=DB^2\\CH\cdot CD=CB^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}DH\cdot25=20^2=400\\CH\cdot25=15^2=225\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}DH=16\left(cm\right)\\CH=9\left(cm\right)\end{matrix}\right.\)
a: Xét ΔBDC vuông tại B và ΔHBC vuông tại H có
\(\widehat{BCD}\) chung
Do đó: ΔBDC~ΔHBC
b: ta có ΔBDC~ΔHBC
=>\(\dfrac{CB}{CH}=\dfrac{CD}{CB}\)
=>\(CB^2=CH\cdot CD\)
c: Xét ΔAKD vuông tại K và ΔBHC vuông tại H có
\(\widehat{ADK}=\widehat{BCH}\)
Do đó;ΔAKD~ΔBHC
d: ΔBDC vuông tại B
=>\(BC^2+BD^2=DC^2\)
=>\(BD^2=25^2-15^2=400\)
=>\(BD=\sqrt{400}=20\left(cm\right)\)
Xét ΔBDC vuông tại B có BH là đường cao
nên \(\left\{{}\begin{matrix}DH\cdot DC=DB^2\\CH\cdot CD=CB^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}DH\cdot25=20^2=400\\CH\cdot25=15^2=225\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}DH=16\left(cm\right)\\CH=9\left(cm\right)\end{matrix}\right.\)
a: Xét ΔBDC vuông tại B và ΔHBC vuông tại H có
\(\widehat{C}\) chung
Do đo:ΔBDC\(\sim\)ΔHBC
b: Ta có: ΔBDC\(\sim\)ΔHBC
nên BC/HC=DC/BC
hay \(BC^2=HC\cdot DC\)
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
\(\widehat{ABH}=\widehat{BDC}\)
Do đó: ΔAHB\(\sim\)ΔBCD
b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có
\(\widehat{ADH}\) chung
Do đó: ΔADH\(\sim\)ΔBDA
Suy ra: \(\dfrac{AD}{BD}=\dfrac{HD}{DA}\)
hay \(AD^2=HD\cdot BD\)
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
Do đó: ΔAHBΔBCD
b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có
chung
Do đó: ΔADHΔBDA
Suy ra:
hay
a, Áp dụng đinh lí Pytago cho tam giác ABC vuông tại A, AH là đường cao
AB^2 + AC^2 = BC^2
=> BC^2 = 36 + 64 = 100 => BC = 10 cm
Vì AD là tia phân giác ^A nên ta có : \(\dfrac{AB}{AC}=\dfrac{BD}{DC}\)
mà DC = BC - BD = 10 - BD
hay \(\dfrac{6}{8}=\dfrac{BD}{10-BD}\Rightarrow BD=\dfrac{30}{7}\)cm
=> DC = 10 - BD = 10 - 30/7 = 40/7 cm
b, Xét tam giác ABC và tam giác AHB ta có :
^BAC = ^AHB = 900
^B chung
Vậy tam giác ABC ~ tam giác AHB ( g.g )
sai chỗ áp dụng địch lí pitago
phải hb = CĂN BẬC HAI BC BÌNH - HC BÌNH
a) Xét ΔBDC vuông tại B và ΔHBC vuông tại H có
\(\widehat{BCH}\) chung
Do đó: ΔBDC\(\sim\)ΔHBC(g-g)
b) Ta có: ΔBDC\(\sim\)ΔHBC(cmt)
nên \(\dfrac{CD}{CB}=\dfrac{CB}{CH}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(BC^2=HC\cdot DC\)(Đpcm)
Chấm hỏi D ở đâu chui ra vậy ạ:"(?
mik viết thiếu nha
cho tam giác ABCD có AB=6cm....................