Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)
b: Xét ΔDHA vuôg tại H và ΔDAB vuông tại A có
góc HDA chung
=>ΔDHA đồng dạng với ΔDAB
c: ΔDHA đồng dạng với ΔDAB
=>DH/DA=DA/DB
=>DA^2=DH*DB
a)hcn ABCD
=> AB = CD và AD = BC
=> AB=CD=8 và AD=BC=6
hcn ABCD
=> góc A = góc B = góc C = góc D = 90 độ
tam giác abd có góc A = 90 độ
=> tam giác abd vuông a
AB2+AD2=BD2
<=>62+82=BD2
<=>BD=10(cm)
a) Áp dụng định lí Pytago: \(BD^2=AB^2+AD^2=8^2+6^2=100\)
\(\Rightarrow BD=10\left(cm\right)\)
b) Xét \(\Delta ADH\) và \(\Delta BDA\) có: \(\left\{{}\begin{matrix}\widehat{AHD}=\widehat{BAD}=90^0\\\widehat{ADH}=\widehat{BDA}\end{matrix}\right.\)
\(\Rightarrow\Delta ADH\sim\Delta BDA\) (g.g)
c) Do \(\Delta ADH\sim\Delta BDA\Rightarrow\dfrac{AD}{DH}=\dfrac{BD}{AD}\Rightarrow AD^2=DH.DB\)
Bài 2:
a) Xét tam giác BDC vuông tại C có:
\(DC^2+BC^2=DB^2\)
\(\Rightarrow BD=\sqrt{DC^2+BC^2}\)( DC=AB)
\(\Rightarrow BD=10\left(cm\right)\)
b) tam giác BDA nhé
Xét tamg giác ADH và tam giác BDA có:
\(\hept{\begin{cases}\widehat{D1}chung\\\widehat{AHD}=\widehat{BAD}=90^0\end{cases}\Rightarrow\Delta ADH~\Delta BDA\left(g.g\right)}\)
c) Vì tam giác ADH đồng dạng với tam giác BDA (cmt)
\(\Rightarrow\frac{AD}{DH}=\frac{BD}{DA}\)( các cạnh t,.ứng tỉ lệ )
\(\Rightarrow AD^2=BD.DH\)
d) Xét tan giác AHB và tam giác BCD có:
\(\hept{\begin{cases}\widehat{AHB}=\widehat{BCD}=90^0\\\widehat{ABH}=\widehat{DBC}=45^0\end{cases}\Rightarrow\Delta AHB~\Delta BCD\left(g.g\right)}\)
( góc= 45 độ bạn tự cm nhé )
e) \(S_{ABD}=\frac{1}{2}AD.AB=\frac{1}{2}AH.BD\)
\(\Rightarrow AD.AB=AH.BD\)
\(\Rightarrow AH=4,8\left(cm\right)\)
Dùng Py-ta-go làm nốt tính DH
Bài 1
a) Áp dụng định lý Pytago vào tam giác ABC vuông tại A ta có:
\(AB^2+AC^2=BC^2\)
Thay AB=3cm, AC=4cm
\(\Rightarrow3^2+4^2=BC^2\)
<=> 9+16=BC2
<=> 25=BC2
<=> BC=5cm (BC>0)
a: Xét ΔHAD vuông tại H và ΔABD vuông tại A có
góc HDA chung
=>ΔHAD đồng dạng với ΔABD
b: ΔABD vuông tại A có AH là đường cao
nên DA^2=DH*DB
c: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)
AH=6*8/10=4,8cm
DH=6^2/10=3,6cm
a: Xét ΔABD vuông tại A có
\(BD^2=AB^2+AD^2\)
nên BD=10(cm)
b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có
\(\widehat{ADH}\) chung
Do đó: ΔADH\(\sim\)ΔBDA
a: Xét ΔHAD vuông tại H và ΔABD vuông tại A có
góc HDA chung
=>ΔHAD đồng dạng vơí ΔABD
b: ΔHAD đồng dạng với ΔABD
=>AD/BD=HD/AD
=>AD^2=DH*DB
c: BD=căn 8^2+6^2=10cm
AH=6*8/10=4,8cm
DH=AD^2/BD=6^2/10=3,6cm
d: ΔHAD đồng dạng với ΔABD
=>S HAD/S ABD=(AD/BD)^2=9/25 và k=AD/BD=3/5
giúp với mình sắp thi rồi!!!!!!!!!!!!!!
a, Xét △AHD và △BAD có:
∠AHD=∠BAD (=90 độ), ∠ADB chung
=> △AHD ∼ △BAD (g.g)
b, Xét △EHD và △BCD có:
∠BHA=∠EHD (=90 độ) (đđ) =>∠BCD=∠EHD (=90 độ)
∠BDC chung
=> △EHD ∼ △BCD (g.g)
\(\dfrac{HD}{CD}=\dfrac{ED}{BD}\)=> DH.DB=DE.DC
c, Áp dụng Đ/l Pitago vào △ABD => BD=√(62+82)=10 cm
Ta có SABC=\(\dfrac{1}{2}AH.BD=\dfrac{1}{2}.AB.AD\)=>AH=\(\dfrac{8.6}{10}=4,8cm\)
Áp dụng Đ/l Pitago vào △AHD => HD=√(62-(4,8)2)=3,6 cm => BH=BD-HD=6,4 cm
Xét △BHA và △DHE có: ∠BAH=∠HED (AB//CD), ∠BHA=∠EHD (=90 độ) (đđ) =>△BHA ∼ △DHE (g.g)
\(\dfrac{AB}{DE}=\dfrac{BH}{HD}=>\dfrac{8}{DE}=\dfrac{6,4}{3,6}=>DE=4,5cm\)
Ta có EM//DB => \(\dfrac{MB}{BC}=\dfrac{ED}{CD}=>\dfrac{MB}{6}=\dfrac{4,5}{8}=>MB=3,375cm\)(đpcm)