K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2021

giúp với mình sắp thi rồi!!!!!!!!!!!!!!

30 tháng 4 2021

a, Xét △AHD và △BAD có:

∠AHD=∠BAD (=90 độ), ∠ADB chung

=> △AHD ∼ △BAD (g.g)

b, Xét △EHD và △BCD có:

∠BHA=∠EHD (=90 độ) (đđ) =>∠BCD=∠EHD (=90 độ)

∠BDC chung

=> △EHD ∼ △BCD (g.g)

\(\dfrac{HD}{CD}=\dfrac{ED}{BD}\)=> DH.DB=DE.DC

c, Áp dụng Đ/l Pitago vào △ABD => BD=√(62+82)=10 cm

 Ta có SABC=\(\dfrac{1}{2}AH.BD=\dfrac{1}{2}.AB.AD\)=>AH=\(\dfrac{8.6}{10}=4,8cm\)

Áp dụng Đ/l Pitago vào △AHD => HD=√(62-(4,8)2)=3,6 cm => BH=BD-HD=6,4 cm

Xét △BHA và △DHE có: ∠BAH=∠HED (AB//CD), ∠BHA=∠EHD (=90 độ) (đđ) =>△BHA ∼ △DHE (g.g)

\(\dfrac{AB}{DE}=\dfrac{BH}{HD}=>\dfrac{8}{DE}=\dfrac{6,4}{3,6}=>DE=4,5cm\)

Ta có EM//DB => \(\dfrac{MB}{BC}=\dfrac{ED}{CD}=>\dfrac{MB}{6}=\dfrac{4,5}{8}=>MB=3,375cm\)(đpcm)

a: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)

b: Xét ΔDHA vuôg tại H và ΔDAB vuông tại A có

góc HDA chung

=>ΔDHA đồng dạng với ΔDAB

c: ΔDHA đồng dạng với ΔDAB

=>DH/DA=DA/DB

=>DA^2=DH*DB

25 tháng 4 2022

a)hcn ABCD

=> AB = CD và AD = BC

=> AB=CD=8 và AD=BC=6

hcn ABCD

=> góc A = góc B = góc C = góc D = 90 độ

tam giác abd có góc A = 90 độ

=> tam giác abd vuông a

AB2+AD2=BD2

<=>62+82=BD2

<=>BD=10(cm)

25 tháng 4 2022

a) Áp dụng định lí Pytago: \(BD^2=AB^2+AD^2=8^2+6^2=100\)

\(\Rightarrow BD=10\left(cm\right)\)

b) Xét \(\Delta ADH\) và \(\Delta BDA\) có: \(\left\{{}\begin{matrix}\widehat{AHD}=\widehat{BAD}=90^0\\\widehat{ADH}=\widehat{BDA}\end{matrix}\right.\)

\(\Rightarrow\Delta ADH\sim\Delta BDA\) (g.g)

c) Do \(\Delta ADH\sim\Delta BDA\Rightarrow\dfrac{AD}{DH}=\dfrac{BD}{AD}\Rightarrow AD^2=DH.DB\)

12 tháng 3 2020

Bài 2:

A B C D H 1

a) Xét tam giác BDC vuông tại C có:

\(DC^2+BC^2=DB^2\)

\(\Rightarrow BD=\sqrt{DC^2+BC^2}\)( DC=AB)

\(\Rightarrow BD=10\left(cm\right)\)

b) tam giác BDA nhé

Xét tamg giác ADH và tam giác BDA có:

\(\hept{\begin{cases}\widehat{D1}chung\\\widehat{AHD}=\widehat{BAD}=90^0\end{cases}\Rightarrow\Delta ADH~\Delta BDA\left(g.g\right)}\)

c) Vì tam giác ADH đồng dạng với tam giác BDA (cmt)

\(\Rightarrow\frac{AD}{DH}=\frac{BD}{DA}\)( các cạnh t,.ứng tỉ lệ )

\(\Rightarrow AD^2=BD.DH\)

d) Xét tan giác AHB và tam giác BCD có:

\(\hept{\begin{cases}\widehat{AHB}=\widehat{BCD}=90^0\\\widehat{ABH}=\widehat{DBC}=45^0\end{cases}\Rightarrow\Delta AHB~\Delta BCD\left(g.g\right)}\)

( góc= 45 độ bạn tự cm nhé )

e) \(S_{ABD}=\frac{1}{2}AD.AB=\frac{1}{2}AH.BD\)

\(\Rightarrow AD.AB=AH.BD\)

\(\Rightarrow AH=4,8\left(cm\right)\)

Dùng Py-ta-go làm nốt tính DH
 

12 tháng 3 2020

Bài 1

A B C H I D

a) Áp dụng định lý Pytago vào tam giác ABC vuông tại A ta có:

\(AB^2+AC^2=BC^2\)

Thay AB=3cm, AC=4cm

\(\Rightarrow3^2+4^2=BC^2\)

<=> 9+16=BC2

<=> 25=BC2

<=> BC=5cm (BC>0)

a: Xét ΔHAD vuông tại H và ΔABD vuông tại A có

góc HDA chung

=>ΔHAD đồng dạng với ΔABD

b: ΔABD vuông tại A có AH là đường cao

nên DA^2=DH*DB

c: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)

AH=6*8/10=4,8cm

DH=6^2/10=3,6cm

a: Xét ΔABD vuông tại A có 

\(BD^2=AB^2+AD^2\)

nên BD=10(cm)

b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có 

\(\widehat{ADH}\) chung

Do đó: ΔADH\(\sim\)ΔBDA

a: Xét ΔHAD vuông tại H và ΔABD vuông tại A có

góc HDA chung

=>ΔHAD đồng dạng vơí ΔABD

b: ΔHAD đồng dạng với ΔABD

=>AD/BD=HD/AD

=>AD^2=DH*DB

c: BD=căn 8^2+6^2=10cm

AH=6*8/10=4,8cm

DH=AD^2/BD=6^2/10=3,6cm

d: ΔHAD đồng dạng với ΔABD

=>S HAD/S ABD=(AD/BD)^2=9/25 và k=AD/BD=3/5