Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BD=căn 8^2+6^2=10cm
Xét ΔBCD vuông tại C có sin DBC=CD/BD=3/5
=>góc DBC=37 độ
=>góc BDC=53 độ
b: CH=8*6/10=4,8cm
BH=BC^2/BD=64/10=6,4cm
a, Vì OB = OC ( =R )
AB = AC (tiếp tuyến)
=> OA là trung trực BC
=> OA vuông góc BC
Vì AB là tiếp tuyến (O)
\(\Rightarrow OB\perp AB\)
=> t/g OAB vuông tại B
Xét t/g OAB vuông tại B có BH là đường cao
=>\(OH.OA=OB^2=R^2\)(hệ thức lượng)
b,* Xét \(\Delta\)BCD có : OB = OC = OD (=R)
=> \(\Delta\)BCD vuông tại C
=> \(BC\perp CD\)
Mà \(BC\perp OA\)
=> CD // OA
a) Ta có OB=OC (cùng là bán kính (O))
AB=AC (tính chất 2 tiếp tuyến cắt nhau tại A)
→O và A cách đều 2 đầu đoạn thẳng BC
→OA là đường trung trực của BC
→OA \(\perp\) BC
Xét Δ OBA vuông tại B có đường cao BH:
OB2= OH . OA (hệ thức lượng)
mà OB=R (OB là bán kính của (O))
→R2 =OH.OA
b)Xét ΔDBC nội tiếp (O) có đường kính BD
→ΔDBC vuộng tại C có cạnh huyền BD
→BC\(\perp\) CD mà OA\(\perp\)BC (cmt)
→OA song song CD
Ta có : AB song song CK (cùng \(\perp\) BD)
Xét ΔOBA vuông tại B
ΔDKC vuông tại K , có
\(\widehat{BOA}\) = \(\widehat{KDC}\) ( 2 góc đồng vị của OA song song CD)
→ΔOBA đồng dạng ΔDKC (g.n)
→\(\frac{OB}{DK}\) =\(\frac{OA}{DC}\) =\(\frac{BA}{KC}\) (tỉ số đồng dạng)
→OA . CK=AB. CD
mà AB=AC (tính chất 2 tiếp tuyến cắt nhau tại A)
→AC . CD= CK . OA (đpcm)
a) AB là đường kính, C thuộc đường tròn nên \(\widehat{ACB}=90^o\) hay tam giác ABC vuông tại C.
Áp dụng hệ thức lượng trong tam giác vuông, ta có
\(BC^2=MB.AB=2.6=12\Rightarrow BC=\sqrt{12}\left(cm\right)\)
b) Xét tam giác cân OAC có OE là đường cao nên đồng thời là phân giác.
Từ đó ta có \(\Delta AOE=\Delta COE\left(c-g-c\right)\Rightarrow\widehat{ECO}=\widehat{EAO}=90^o\)
Vậy EC là tiếp tuyến của (O) tại C.
c) Xét tam giác AFK, ta thấy ngay B là trực tâm nên \(AK\perp FD\). Lại có \(AD\perp FD\), vậy A, D, F thẳng hàng.
Ta thấy ngay AH là phân giác góc \(\widehat{FAK}\) mà lại là đường cao, vậy tam giác AH đồng thời là trung trực của FK.
B thuộc AH, vậy BF = BK hay tam giác FBK cân tại B.
d) Ta có tứ giác ACHK nội tiếp nên \(\widehat{HCF}=\widehat{AKF}=\widehat{AFK}\) (Tam giác AFK cân)
Ta cũng có \(\widehat{ACO}=\widehat{OAC}\)(Tam giác AOC cân)
Vậy nên \(\widehat{HCF}+\widehat{OCA}=\widehat{CHF}+\widehat{CAO}=90^o\Rightarrow\widehat{OCH}=90^o\)
Vậy thì \(\widehat{ECH}=\widehat{ECO}+\widehat{OCH}=180^o\) hay H, C, E thẳng hàng.
a) Tứ giác AHIK có:
A H I ^ = 90 0 ( I H ⊥ A B ) A K I ^ = 90 0 ( I K ⊥ A D ) ⇒ A H I ^ + A K I ^ = 180 0
=> Tứ giác AHIK nội tiếp.
b) ∆ IAD và ∆ IBC có:
A ^ 1 = B ^ 1 (2 góc nội tiếp cùng chắn cung DC của (O))
A I D ^ = B I C ^ (2 góc đối đỉnh)
=> ∆ IAD ~ ∆ IBC (g.g)
⇒ I A I B = I D I C ⇒ I A . I C = I B . I D
c, Xét đường tròn ngoại tiếp tứ giác AHIK có K ^ 1 = D ^ 1
A ^ 1 = H ^ 1 (2 góc nội tiếp cùng chắn cung IK)
mà A ^ 1 = B ^ 1 ⇒ H ^ 1 = B ^ 1
Chứng minh tương tự, ta được K ^ 1 = D ^ 1
∆ HIK và ∆ BCD có: H ^ 1 = B ^ 1 ; K ^ 1 = D ^ 1
=> ∆ HIK ~ ∆ BCD (g.g)
d) Gọi S1 là diện tích của ∆ BCD.
Vì ∆ HIK ~ ∆ BCD nên:
S ' S 1 = H K 2 B D 2 = H K 2 ( I B + I D ) 2 ≤ H K 2 4 I B . I D = H K 2 4 I A . I C (1)
Vẽ A E ⊥ B D , C F ⊥ B D ⇒ A E / / C F ⇒ C F A E = I C I A
∆ ABD và ∆ BCD có chung cạnh đáy BD nên:
S 1 S = C F A E ⇒ S 1 S = I C I A (2)
Từ (1) và (2) suy ra
S ' S 1 ⋅ S 1 S ≤ H K 2 4 I A . I C ⋅ I C I A ⇔ S ' S ≤ H K 2 4 I A 2 (đpcm)
a: Sửa đề: AD=6cm
BC=AD=6cm
CD=AB=8cm
BD=căn 6^2+8^2=10cm
Xét ΔBCD vuông tại C có sin DBC=DC/BD=8/10=4/5
nên góc DBC=53 độ
=>góc BDC=37 độ
b: CH=6*8/10=4,8cm
BH=BC^2/BD=6^2/10=3,6cm
Sao lại sửa đề ạ?