K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2018

O A B C H D K I

a, Vì OB = OC ( =R )

        AB = AC (tiếp tuyến)

=> OA là trung trực BC

=> OA vuông góc BC
Vì AB là tiếp tuyến (O)

\(\Rightarrow OB\perp AB\)

=> t/g OAB vuông tại B

Xét t/g OAB vuông tại B có BH là đường cao 

=>\(OH.OA=OB^2=R^2\)(hệ thức lượng)

b,* Xét \(\Delta\)BCD có : OB = OC = OD (=R)

=> \(\Delta\)BCD vuông tại C

=> \(BC\perp CD\)

Mà  \(BC\perp OA\)

=> CD // OA 

16 tháng 12 2016

A C D B H K a) Ta có OB=OC (cùng là bán kính (O))

AB=AC (tính chất 2 tiếp tuyến cắt nhau tại A)

→O và A cách đều 2 đầu đoạn thẳng BC

→OA là đường trung trực của BC

→OA \(\perp\) BC

Xét Δ OBA vuông tại B có đường cao BH:

OB2= OH . OA (hệ thức lượng)

mà OB=R (OB là bán kính của (O))

→R2 =OH.OA

b)Xét ΔDBC nội tiếp (O) có đường kính BD

→ΔDBC vuộng tại C có cạnh huyền BD

→BC\(\perp\) CD mà OA\(\perp\)BC (cmt)

→OA song song CD

Ta có : AB song song CK (cùng \(\perp\) BD)

Xét ΔOBA vuông tại B

ΔDKC vuông tại K , có

\(\widehat{BOA}\) = \(\widehat{KDC}\) ( 2 góc đồng vị của OA song song CD)

→ΔOBA đồng dạng ΔDKC (g.n)

\(\frac{OB}{DK}\) =\(\frac{OA}{DC}\) =\(\frac{BA}{KC}\) (tỉ số đồng dạng)

→OA . CK=AB. CD

mà AB=AC (tính chất 2 tiếp tuyến cắt nhau tại A)

→AC . CD= CK . OA (đpcm)

8 tháng 12 2019

Chỉ cần làm câu c thôi nhé!

4 tháng 1 2021

kẻ BA giao với DC tại S

c minh AB=AS

IC=IK,KH=HC

IH vuông góc với CK

suy ra diện tích tam giác

BIK=1/2 KI.BK=1/4BK.CK

CHD=1/2HI.CK=1/4BK>CK

a) Xét (O) có 

AB là tiếp tuyến có B là tiếp điểm(gt)

AC là tiếp tuyến có C là tiếp điểm(gt)

Do đó: AB=AC(Tính chất hai tiếp tuyến cắt nhau)

Ta có: AB=AC(cmt)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: OB=OC(=R)

nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

hay OA⊥BC(đpcm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔOBA vuông tại B có BH là đường cao ứng với cạnh huyền OA, ta được: 

\(OH\cdot OA=OB^2\)

mà OB=R(B∈(O))

nên \(OH\cdot OA=R^2\)(đpcm)

b) Xét (O) có 

ΔBCD nội tiếp đường tròn(B,C,D∈(O))

BD là đường kính của (O)

Do đó: ΔBCD vuông tại C(Định lí)

⇒BC⊥CD tại C

Ta có: BC⊥CD(cmt)

BC⊥OA(cmt)

Do đó: OA//CD(Định lí 1 từ vuông góc tới song song)

CẢNH BÁO! Tiếp tục đọc, hoặc linh hồn của bạn sẽ được thực hiện, ngay cả khi bạn đọc từ "cảnh báo"! Có một lần là một người tên là Duke Hunapon. Anh ta lười biếng, và rất bảnh bao. Anh ấy luôn mặc một chiếc áo khoác, không có vấn đề gì ở bên ngoài. Anh ta có một người anh trai tên là Michael, người luôn làm anh ta vây quanh. Một ngày nọ, Michael bị giết, và nó ảnh hưởng rất nhiều đến Duke. Anh ta phát điên và bắt đầu giết người. Chẳng mấy chốc, anh ta đã chiến đấu với ai đó và bị giết. Bây giờ, anh ta đi lang thang xung quanh như một bộ xương cao với một chiếc áo sơ mi màu đỏ, và cùng một chiếc áo hoodie mà Duke đã mặc. Bộ xương này được gọi là "Swapfell Papyrus", và anh ta sẽ giết bạn nếu bạn không đăng bài này trên 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ. Nếu bạn thất bại, và bạn thức dậy khi anh ta ở trong phòng của bạn, cái chết của bạn sẽ chậm và rất đau đớn. Một cô gái tên Lily Lilupanin đọc điều này, và không nghe. Cô bị hãm hiếp và bị giết trong giấc ngủ. Nếu bạn sao chép và dán vào 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ, Swapfell Papyrus sẽ đảm bảo bạn cảm thấy an toàn

16 tháng 11 2021

a, Theo tc 2 tiếp tuyến cắt nhau: AB=AC nên A∈trung trực BC

Mà OB=OC=R nên O∈trung trực BC

Do đó OA là trung trực BC hay OA⊥BC

Áp dụng HTL: \(OA\cdot OH=OB^2=R^2\)

b, \(\widehat{BCD}=90^0\) (góc nt chắn nửa đg tròn) nên CD⊥BC

Mà OA⊥BC nên CD//AO

16 tháng 11 2021

b, AO//CD nên \(\widehat{AOB}=\widehat{CDK}\) (đồng vị)

Do đó \(\Delta AOB\sim\Delta CDK\left(g.g\right)\)

\(\Rightarrow\dfrac{AB}{CK}=\dfrac{AO}{CO}\Rightarrow AB\cdot CO=CK\cdot AO\)

Mà \(AC=AB\Rightarrow AC\cdot CO=CK\cdot AO\)

c, Tiếp tuyến tại D của (O) cắt AC tại E

Theo tc 2 tt cắt nhau: \(AC=AB;CE=ED\Rightarrow\dfrac{AC}{CE}=\dfrac{AB}{ED}\)

Lại có AB//CK//DE(⊥BD) nên \(\dfrac{AC}{CE}=\dfrac{AI}{ID};\widehat{BAI}=\widehat{IDE}\) (so le trong)

\(\Rightarrow\dfrac{AB}{ED}=\dfrac{AI}{ID}\)

Do đó \(\Delta ABI\sim\Delta DEI\left(c.g.c\right)\)

\(\Rightarrow\widehat{AIB}=\widehat{EID}\)

Mà 2 góc này ở vị trí đối đỉnh và A,I,D thẳng hàng nên B,I,E thẳng hàng

Talet: \(\dfrac{CI}{ED}=\dfrac{AI}{AD};\dfrac{IK}{ED}=\dfrac{BK}{BD};\dfrac{AI}{AD}=\dfrac{BK}{BD}\)

\(\Rightarrow\dfrac{CI}{ED}=\dfrac{IK}{ED}\Rightarrow CI=IK\) hay I là trung điểm CK

\(\Rightarrow\dfrac{S_{BIK}}{S_{BCK}}=\dfrac{IK}{CK}=\dfrac{1}{2}\)

Mà \(\dfrac{S_{CHK}}{S_{BCK}}=\dfrac{CH}{BC}=\dfrac{1}{2}\) (H là trung điểm BC, bạn tự cm)

Vậy \(S_{BIK}=S_{CHK}\)

 Bài 1: Từ điểm A ở bên ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến đường tròn (O) (B,C là hai tiếp điểm). Kẻ cát tuyến ADE vs đường tròn (O) (D nằm giữa A và E).a) cm: A,B,O,C cùng thuộc một đường tròn.b) cm: OA vuông BC tại H và OD2 = OH.OA. Từ đó suy ra tam giác OHD đồng dạng vs tam giác ODA.c) cm: BC trùng với tia phân giác của góc DHE.d) Từ D kẻ đường thẳng song song với BE, đường...
Đọc tiếp

 Bài 1: Từ điểm A ở bên ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến đường tròn (O) (B,C là hai tiếp điểm). Kẻ cát tuyến ADE vs đường tròn (O) (D nằm giữa A và E).

a) cm: A,B,O,C cùng thuộc một đường tròn.

b) cm: OA vuông BC tại H và OD= OH.OA. Từ đó suy ra tam giác OHD đồng dạng vs tam giác ODA.

c) cm: BC trùng với tia phân giác của góc DHE.

d) Từ D kẻ đường thẳng song song với BE, đường thẳng này cắt AB, AC lần lượt tại M và N. cm: D là trung điểm MN.

Bài 2: Cho đường tròn tâm O bán kính R, dây BC khác đường kính. Hai tiếp tuyến của đường tròn (O,R) tại B và tại C cắt nhau tại A. Kẻ đường kính CD, kẻ BH vuông góc vs CD tại H.

a) cm: A,B,O,C cùng thuoojcj một đường tròn. Xác định tâm và bán kính của đường tròn đó.

b) cm: AO vuông góc vs BC. Cho biết R=15cm, BC=24cm. Tính AB, OA.

c) cm: BC là tia phân giác của góc ABH.

d) Gọi I là giao điểm của AD và BH, E là giao điểm của BD và AC. cm: IH=IB.

0
15 tháng 9 2019

a, A,H,O thẳng hàng vì AH,AO cùng vuông góc với BC

HS tự chứng minh A,B,C,O cùng thuộc đường tròn đường kính OA

b, Ta có  K D C ^ = A O D ^ (cùng phụ với góc  O B C ^ )

=> ∆KDC:∆COA (g.g) => AC.CD = CK.AO

c, Ta có:  M B A ^ = 90 0 - O B M ^ và  M B C ^ = 90 0 - O M B ^

Mà  O M B ^ = O B M ^ (∆OBM cân) =>  M B A ^ = M B C ^

=> MB là phân giác  A B C ^ . Mặt khác AM là phân giác B A C ^

Từ đó suy ra M là tâm đường tròn nội tiếp tam giác ABC

d, Kẻ CD ∩ AC = P. Chứng minh ∆ACP cân tại A

=> CA = AB = AP => A là trung điểm CK