K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2016

A B D O H S C

Gọi D là trung điểm của cạnh AB và O là tâm của tam giác ABC.

Ta có \(\begin{cases}AB\perp CD\\AB\perp SO\end{cases}\) nên \(AB\perp\left(SCD\right)\)

Do đó \(AB\perp SC\)

Mặt khác \(SC\perp AH\) suy ra \(SC\perp\left(ABH\right)\)

Ta có : \(CD=\frac{a\sqrt{3}}{2};OC=\frac{a\sqrt{3}}{2}\) nên \(SO=\sqrt{SC^2-OC^2}=\frac{a\sqrt{33}}{3}\)

Do đó : \(DH=\frac{SO.CD}{SC}=\frac{a\sqrt{11}}{4}\Rightarrow S_{\Delta ABH}=\frac{1}{2}AB.DH=\frac{\sqrt{11}a^2}{8}\)

Ta có : \(SH=SC-HC=SC-\sqrt{CD^2-DH^2}=\frac{7a}{4}\)

Do đó : \(V_{S.ABH}=\frac{1}{3}SH.S_{\Delta ABH}=\frac{7\sqrt{11}a^3}{96}\)

30 tháng 3 2016

V(SABC) = SA.S(ABC)/3 = 2a.(a√3/2).a/6 = a^3√3/6 
gọi khoảng cách từ A đến mp(SBC) là h, ta có: 
V1 = V(SAMN) = V(ASMN) = S(SMN).h/3 
V = V(SABC) = V(ASBC) = S(SBC).h/3 
=> V1/V = S(SMN)/S(SBC) = 1/2.SM.SN.sin(MSN^)/1/2.SB.SC.sin(MSN^) = (SM/SB).(SN/SC) 
SB = SC (do AB = AC) và SM = SN ( = SA^2/SB) 
=> V1/V = (SM/SB)^2 
SB^2 = SA^2 + AB^2 = 4a^2 + a^2 = 5a^2 => SB = a√5 
SM = SA^2/SB = 4a^2/(a√5) = 4a/√5 
=> V1/V = (16a^2/5)/(5a^2) = 16/25 
=> (V - V1)/V = 9/25 
=> V(A.BCNM) = (V - V1) = 9.V/25 = 9.(a^3√3/6)/25 = 3a^3√3/50 

7 tháng 9 2018

Đáp án A

Hướng dẫn giải:

Gọi G là trọng tâm tam giác đều ABC và M là trung điểm AB

Khi đó S G ⊥ ( A B C )

Do  A B ⊥ S G A B ⊥ C M ⇒ A B ⊥ H M

Lại có  C M = a 3 2

⇒ S G = a 11 3

Suy ra H M = S G . C M S C = a 11 4 .

⇒ C H = C M 2 - H M 2 = a 4

Khi đó S H = 7 a 4

⇒ V = 1 3 S H . S H B C = 7 a 3 11 96

29 tháng 3 2018

31 tháng 8 2018

Đáp án A

20 tháng 1 2018

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ. Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích...
Đọc tiếp

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ.

Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích hình chóp S.ABCD.

Bài 8. Cho hình chóp S.ABCD có đáy ABCD là một hình thang cân (AB//CD) với AC=20 cm BC=15 cm AB=25 cm . Cho SA vuông góc với đáy và SA =18cm . Tính thể tích của khối chóp.

Bài 9. Cho hình chóp S.ABC có SA vuông góc với đáy. Mặt bên SBC là tam giác đều cạnh a. Cho gócBAC =120 . Tính VS ABC .

. Bài 10. Cho khối chóp S.ABC có đường cao SA bằng a, đáy là tam giác vuông cân có AB= BC= a . Gọi B' là trung điểm của SB, C' là chân đường cao hạ từ A của tam giác S.ABC:

a.Tính thể tích khối chóp S.ABC

b.Chứng minh SC vuông góc với (AB'C')

c.Tính thể tích khối chóp S.ABC

0
5 tháng 1 2020

20 tháng 6 2017

Giải bài 6 trang 26 sgk Hình học 12 | Để học tốt Toán 12

S H = S A 2 - A H 2 = a

Thể tích khối chóp S.ABC là:

Giải bài 6 trang 26 sgk Hình học 12 | Để học tốt Toán 12

⇒ Thể tích khối chóp S.DBC là:

Giải bài 6 trang 26 sgk Hình học 12 | Để học tốt Toán 12

15 tháng 5 2019