K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2019

Đáp án D

Phương pháp giải: Dựng hình, dựa vào tam giác cân để xác định các yếu tố vuông góc

Lời giải: Với hình chóp tam giác đều S.ABC thì: góc giữa các cạnh bên và mặt đáy bằng nhau, hình chiếu vuông góc của S trên mặt phẳng (ABC) là trọng tâm tam giác ABC, hai cạnh đối diện vuông góc với nhau. 

27 tháng 5 2017

Đáp án D

Do Δ S A B , Δ S A C  cân nên M, N là trung điểm SB, SC 

Ta có: V S . A M N V S . A B C = S M S B S N S C = 1 2 1 2 = 1 4 ⇒ V A . B C M N V S . A B C = 3 4  

⇒ V A . B C M N = 3 4 V S . A B C = 1 4 S A . d t A B C = 1 4 a . a 2 3 4 = a 3 3 16

18 tháng 2 2018

Đáp án A

12 tháng 9 2018

Gọi N là trung điểm của BC, dựng hình bình hành ABNP.

Ta có:

Chọn: B

17 tháng 11 2017

Xác định được 

Khi đó ta tính được 

Trong mặt phẳng (ABC) lấy điểm D sao cho ABCD là hình chữ nhật

=> AB//CD  nên

Xét tam giác vuông SAD có 

Chọn C. 

14 tháng 5 2018

Đáp án A.

24 tháng 1 2017

Đáp án A.

Ta có   S C H ^ = 60 ° và

H C = a 7 3 ; S H = H C tan S C H ^ = a 21 3

Từ A kẻ tia A x / / C B  (như hình vẽ). Khi đó B C / / S A x  và do B A = 3 2 H A  nên

d B C , S A = d B C , S A x = d B , S A x = 3 2 d H , S A x

Gọi N và K lần lượt là hình chiếu vuông góc của H trên Ax và SN.

Do A N ⊥ S H N  và H K ⊥ S N  nên H K ⊥ S A N . Khi đó d B C , S A = 3 2 H K .

Ta có

A H = 2 a 3 ; H N = A H sin N A H ^ = a 3 3 .

Suy ra H K = H N . H S H N 2 + H S 2 = a 42 12 . Vậy d B C , S A = a 42 8 .

4 tháng 10 2018

Đáp án C

2 tháng 2 2017

Chọn D

3 tháng 9 2018

Đáp án A.

Phương pháp:

- Phương pháp tọa độ hóa.

- Công thức tính khoảng cách giữa hai đường thẳng trong không gian:

d Δ 1 ; Δ 2 = M 1 M 2 → . u 1 → ; u 2 → u 1 → ; u 2 → ,     M 1 ∈ Δ 1 ; M 2 ∈ Δ 2  

Cách giải:

Gắn hệ trục tọa độ (như hình vẽ): 

A 0 ; 0 ; 0 ,   B 0 ; a ; 0 ,   C a 3 2 ; a 2 ; 0 ,   S 0 ; 0 ; 3 a  

M, N lần lượt là trung điểm của AB, SC

⇒ M 0 ; a 2 ; 0 ,   N a 3 4 ; a 4 ; 3 a 2  

⇒ A N → = a 3 4 ; a 4 ; 3 a 2 ;     C M → = − a 3 2 ; 0 ; 0  

Đường thẳng AN có 1 VTCP u 1 → = 3 ; 1 ; 6 ,  

đi qua điểm A 0 ; 0 ; 0 .  

Đường thẳng CM có 1 VTCP u 1 → = 1 ; 0 ; 0 ,  đi qua điểm  A 0 ; a 2 ; 0 .

A M → = 0 ; a 2 ; 0 ,   u 1 → ; u 2 → = 0 ; 6 ; − 1  

d A N ; C M = A M → . u 1 → ; u 2 → u 1 → ; u 2 → = 0.0 + a 2 .6 + 0. − 1 0 2 + 6 2 + 1 2 = 3 a 37

 

19 tháng 2 2018

Đáp án D