K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2023

1

24 tháng 12 2023

1

10 tháng 6 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

7 tháng 12 2018

a) Chứng minh  B 1 ,   C 1 ,   D 1  lần lượt là trung điểm của các cạnh SB, SC, SD

Ta có:

Giải bài tập Đại số 11 | Để học tốt Toán 11

⇒ A 1 B 1  là đường trung bình của tam giác SAB.

⇒   B 1  là trung điểm của SB (đpcm)

*Chứng minh tương tự ta cũng được:

• C 1  là trung điểm của SC.

• D 1  là trung điểm của SD.

b) Chứng minh  B 1 B 2   =   B 2 B ,   C 1 C 2   =   C 2 C ,   D 1 D 2   =   D 2 D .

Giải bài tập Đại số 11 | Để học tốt Toán 11

⇒ A 2 B 2  là đường trung bình của hình thang A 1 B 1 B A

⇒   B 2  là trung điểm của B 1 B

⇒   B 1 B 2   =   B 2 B (đpcm)

*Chứng minh tương tự ta cũng được:

• C 2  là trung điểm của C 1 C 2   ⇒   C 1 C 2   =   C 2 C

• D 2  là trung điểm của D 1 D 2   ⇒   D 1 D 2   =   D 2 D .

c) Các hình chóp cụt có một đáy là tứ giác ABCD, đó là : A 1 B 1 C 1 D 1 . A B C D   v à   A 2 B 2 C 2 D 2 . A B C D

NV
5 tháng 4 2019

(P) cắt SB, SC, SD mới đúng, (P) đã cắt AB tại A rồi cơ mà

Từ A kẻ \(AC'\perp SC\), trong các mặt pẳng (SCD) và (SBC) từ C' lần lượt kẻ các đường thẳng vuông góc SC cắt SD và SB tại D' và B'

Gọi cạnh bên của hình chóp là \(SA=SB=SC=SD=x\Rightarrow SB'=\frac{2x}{3}\)

Áp dụng định lý hàm cos: \(cos\widehat{ASC}=\frac{2x^2-2a^2}{2x^2}\); \(cos\widehat{BSC}=\frac{2x^2-a^2}{2x^2}\)

Trong tam giác vuông SAC':\(SC'=SA.cos\widehat{ASC}=\frac{2x^2-2a^2}{2x}\)

Trong tam giác vuông SB'C': \(SC'=SB'.cos\widehat{BSC}=\frac{2x^2-a^2}{3x}\)

\(\Rightarrow\frac{2x^2-2a^2}{2x}=\frac{2x^2-a^2}{3x}\Rightarrow x=a\sqrt{2}\)

\(\Rightarrow SC'=\frac{a\sqrt{2}}{2}\Rightarrow\frac{SC'}{SC}=\frac{1}{2}\)

Do tính đối xứng của hình chóp đều \(\Rightarrow\frac{SD'}{SD}=\frac{SB'}{SB}=\frac{2}{3}\)

Áp dụng công thức Simsons ta có:

\(V_{S.AB'C'D'}=\frac{1}{4}.\frac{2}{3}.\frac{2}{3}.\frac{1}{2}\left(1+\frac{3}{2}+\frac{3}{2}+2\right)V_{S.ABCD}=\frac{1}{3}V_{SABCD}=\frac{a^3\sqrt{6}}{18}\)

\(\Rightarrow S_{AB'C'D'}=\frac{3V_{S.AB'C'D'}}{SC'}=\frac{a^2\sqrt{3}}{3}\)

b/Gọi O là tâm đáy, M là trung điểm BC \(\Rightarrow OM\perp BC\Rightarrow BC\perp\left(SOM\right)\)

\(AD//\left(SBC\right)\Rightarrow d\left(AD;B'C'\right)=d\left(AD;\left(SBC\right)\right)=2.d\left(O;\left(SBC\right)\right)\)

Từ O kẻ \(OH\perp SM\Rightarrow OH\perp\left(SBC\right)\Rightarrow OH=d\left(O;\left(SBC\right)\right)\)

\(SO=\frac{SC.\sqrt{3}}{2}=\frac{a\sqrt{6}}{2}\)

\(\frac{1}{OH^2}=\frac{1}{SO^2}+\frac{1}{OM^2}\Rightarrow OH=\frac{SO.OM}{\sqrt{SO^2+OM^2}}=\frac{a\sqrt{42}}{14}\)

\(\Rightarrow d\left(AD;B'C'\right)=\frac{a\sqrt{42}}{7}\)

23 tháng 1 2022

lỗi hình mất r 

23 tháng 1 2022

lỗi hình