K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2018

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 1)

- Gọi O là giao điểm của AC và BD.

- Kẻ: OI ⊥ AB, OH ⊥ SI.

+) Ta có:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 1)

+) Ta lại có:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 1)

- Do đó, góc giữa hai mặt phẳng (SAB) và (ABCD) bằng góc Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 1)

+) Khi đó: CD // AB nên CD // ( SAB).

Suy ra:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 1)

- Ta có:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 1)

+) Tam giác ABC có BC = BA và Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 1) nên tam giác ABC đêù

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 1)

- Trong tam giác OIA có:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 1)

30 tháng 4 2022

Có : AC vuông góc với BD (hình vuông ABCD)

       SA vuông góc với BD ( do SA vuông góc với mp ABCD)

=> BD vuông góc với mp SAC...

a: SO vuông góc (ABCD)

=>(SAC) vuông góc (ABCD)

SO vuông góc (ABCD)

=>(SBD) vuông góc (ABCD)

b: BD vuông góc AC

BD vuông góc SA

=>BD vuông góc (SAC)

d: (SB;(ABCD))=(BS;BO)=góc SBO

cos SBO=OB/SB=a*căn 2/2/(a*căn 2)=1/2

=>góc SBO=60 độ

1 tháng 2 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Gọi I là giao điểm của mặt phẳng (α) với cạnh SC. Ta có: (α) ⊥ SC, AI ⊂ (α) ⇒ SC ⊥ AI. Vậy AI là đường cao của tam giác vuông SAC. Trong mặt phẳng (SAC), đường cao AI cắt SO tại K và AI ⊂ (α), nên K là giao điểm của SO với (α).

b) Ta có Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ BD ⊥ SC

Mặt khác BD ⊂ (SBD) nên (SBD) ⊥ (SAC).

Vì BD ⊥ SC và (α) ⊥ SC nhưng BD không chứa trong (α) nên BD // (α)

Ta có K = SO ∩ (α) và SO thuộc mặt phẳng (SBD) nên K là một điểm chung của (α) và (SBD).

Mặt phẳng (SBD) chứa BD // (α) nên cắt theo giao tuyến d // BD. Giao tuyến này đi qua K là điểm chung của (α) và (SBD).

Gọi M và N lần lượt là giao điểm của d với SB và SD. Ta được thiết diện là tứ giác AIMN vuông góc với SC và đường chéo MN song song với BD.

a: (SBD) giao (ABCD)=BD

AB vuông góc BD

SB vuông góc BD

=>góc cần tìm là góc SBA

NV
8 tháng 5 2023

a.

\(\left\{{}\begin{matrix}SO\perp\left(ABCD\right)\Rightarrow SO\perp AC\\AC\perp BD\left(\text{hai đường chéo hình vuông}\right)\end{matrix}\right.\) 

\(\Rightarrow AC\perp\left(SBD\right)\)

Mà \(AC\in\left(SAC\right)\Rightarrow\left(SAC\right)\perp\left(SBD\right)\)

b.

\(SO\perp\left(ABCD\right)\Rightarrow OC\) là hình chiếu vuông góc của SC lên (ABCD)

\(\Rightarrow\widehat{SCO}\) là góc giữa SC và (ABCD)

\(OC=\dfrac{1}{2}AC=a\sqrt{2}\)

\(tan\widehat{SCO}=\dfrac{SO}{OC}=\sqrt{3}\Rightarrow\widehat{SCO}=60^0\)

c.

Gọi E là trung điểm CD, từ O kẻ \(OF\perp SE\)

OE là đường trung bình tam giác BCD \(\Rightarrow\left\{{}\begin{matrix}OE=\dfrac{1}{2}BC=a\\OE||BC\Rightarrow OE\perp CD\end{matrix}\right.\)

\(\Rightarrow CD\perp\left(SOE\right)\)\(\Rightarrow CD\perp OF\)

\(\Rightarrow OF\perp\left(SCD\right)\Rightarrow OF=d\left(O;\left(SCD\right)\right)\)

Do \(\left\{{}\begin{matrix}AO\cap\left(SCD\right)=C\\AC=2OC\end{matrix}\right.\) \(\Rightarrow d\left(AB;\left(SCD\right)\right)=d\left(A;\left(SCD\right)\right)=2d\left(O;\left(SCD\right)\right)=2OF\)

Hệ thức lượng: \(OF=\dfrac{OE.SO}{\sqrt{OE^2+SO^2}}=...\)

NV
8 tháng 5 2023

loading...