K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔSAC có

O,M lần lượt là trung điểm của CA,CS

=>OM là đường trung bình của ΔSAC

=>OM//SA

SA//OM

\(OM\subset\left(MBD\right)\)

SA không thuộc mp(MBD)

Do đó: SA//(MBD)

b: Xét (OMD) và (SAD) có

\(D\in\left(OMD\right)\cap\left(SAD\right)\)

OM//SA

Do đó: (OMD) giao (SAD)=xy, xy đi qua D và xy//OM//SA

19 tháng 10 2023

loading...  loading...  

27 tháng 10 2023

a: loading...

b: \(O\in AC\subset\left(SAC\right);M\in SC\subset\left(SAC\right)\)

Do đó: \(OM\subset\left(SAC\right)\)

c: Xét ΔCAS có

O,M lần lượt là trung điểm của CA,CS

=>OM là đường trung bình

=>OM//SA và OM=SA/2

OM//SA

\(SA\subset\left(SAD\right)\)

OM không nằm trong mp(SAD)

Do đó: OM//(SAD)

d: SA//MO

\(MO\subset\left(MBD\right)\)

SA không nằm trong mp(MBD)

Do đó: SA//(MBD)

e: Xét (OMD) và (SAD) có

OM//SA

\(D\in\left(OMD\right)\cap\left(SAD\right)\)

Do đó: (OMD) giao (SAD)=xy, xy đi qua D và xy//OM//SA

11 tháng 11 2023

 

a:

loading...

b: \(O\in AC\subset\left(SAC\right)\)

\(M\in SC\subset\left(SAC\right)\)

Do đó: \(OM\subset\left(SAC\right)\)

c: Xét ΔSAC có

O,M lần lượt là trung điểm của CA,CS

=>OM là đường trung bình của ΔSAC

=>OM//SA và \(OM=\dfrac{1}{2}SA\)

OM//SA

SA\(\subset\left(SAD\right)\)

OM không thuộc mp(SAD)

Do đó: OM//(SAD)

d: SA//MO

\(MO\subset\left(MBD\right)\)

SA không thuộc mp(MBD)

Do đó: SA//(MBD)

e: Xét (OMD) và (SAD) có

\(D\in\left(OMD\right)\cap\left(SAD\right)\)

OM//SA

Do đó: \(\left(OMD\right)\cap\left(SAD\right)=xy,D\in xy\) và xy//OM//SA

11 tháng 11 2023

a: loading...

b: \(O\in AC\subset\left(SAC\right)\)

\(M\in SC\subset\left(SAC\right)\)

Do đó: \(OM\subset\left(SAC\right)\)

c: Xét ΔSAC có

O,M lần lượt là trung điểm của CA,CS

=>OM là đường trung bình của ΔSAC

=>OM//SA và \(OM=\dfrac{1}{2}SA\)

OM//SA

SA\(\subset\left(SAD\right)\)

OM không thuộc mp(SAD)

Do đó: OM//(SAD)

d: SA//MO

\(MO\subset\left(MBD\right)\)

SA không thuộc mp(MBD)

Do đó: SA//(MBD)

e: Xét (OMD) và (SAD) có

\(D\in\left(OMD\right)\cap\left(SAD\right)\)

OM//SA

Do đó: \(\left(OMD\right)\cap\left(SAD\right)=xy,D\in xy\) và xy//OM//SA

Đề sai rồi bạn

19 tháng 1 2022

undefined

NV
22 tháng 12 2022

Qua S kẻ đường thẳng d song song AD (và BC)

Do \(\left\{{}\begin{matrix}S\in\left(SAD\right)\cap\left(SBC\right)\\AD||BC\\AD\in\left(SAD\right)\\BC\in\left(SBC\right)\end{matrix}\right.\) \(\Rightarrow\) giao tuyến của (SAD) và (SBC) là đường thẳng qua S và song song AD, BC

\(\Rightarrow d=\left(SAD\right)\cap\left(SBC\right)\)