K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2017

Chọn đáp án C

11 tháng 8 2019

Chọn đáp án C

Gọi O là trung điểm AB.

Do tam giác SAB đều và nằm trong mặt phẳng vuông góc (ABCD) nên  S O ⊥ A B C D

3 tháng 11 2018

Đáp án C

24 tháng 2 2019

28 tháng 8 2019

Đáp án là D

25 tháng 4 2019

 

2 tháng 4 2018

Đáp án A.

Gọi O là tâm hình vuông ABCD, H là trung điểm AB.

⇒ A B ⊥ S H O ⇒ S A B ; A B C D ^ = S H ; O H ^ = S H O ^ = α . ⇒ c o s α = 1 3 ⇒ tan α = 3 x 2 − 1 = 2 2 ⇒ S O = tan α × O H = a 2 .

Kẻ CM vuông góc với SD M ∈ S D ⇒ m p P ≡ m p A C M .

Mặt phẳng A M C  chia khối chóp A.ABCD thành hai khối đa diện gồm M.ACD có thể tích là V 1  và khối đa diện còn lại có thể tích V 2 .

Diện tích tam giác SAB là S Δ S A B = 1 2 . S H . A B = a 2 . 3 a 2 = 3 a 2 4 .

S D = S O 2 + D O 2 = a 10 2 ⇒ S Δ . S C D = 1 2 . S H . S D ⇒ C M = 3 a 10 .

Tam giác MCD vuông tại M ⇒ M D = C D 2 − M C 2 = a 10 ⇒ M D S D = 1 5 .

Ta có:

V M . A C D V S . A C D = M D S D = 1 5 ⇒ V M . A C D = V S . A B C D 10 ⇔ V 1 = V 1 + V 2 10 ⇔ V 1 V 2 = 1 9 .

2 tháng 1 2017

Đáp án D

Phương pháp:

Gọi a’ là hình chiếu vuông góc của a trên mặt phẳng (P).

Góc giữa đường thẳng a và mặt phẳng (P) là góc giữa đường thẳng a và a’.

Cách giải:

Gọi H là trung điểm của AB => OH//AD

ABCD là hình vuông => AD ⊥ AB; OHAB

Mà OH ⊥ SA, (vì SA ⊥ (ABCD))

=> OH ⊥ (SAB)

=>SH là hình chiếu vuông góc của SO trên mặt phẳng (SAB)

=> (SO,(SAB)) = (SO,SH) = HSO

Ta  có:  OH là đường trung bình của tam giác ABD 

Tam giác SAH vuông tại A 

Tam giác SHO vuông tại H: 

16 tháng 4 2017