K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2018

Đáp án B.

Ta có AD//BC, => AD//(SBC)

=> d(AD;SC) = d(AD;(SBC)) = d(D;(SBC)).

Qua I kẻ đường thẳng song song với AD, cắt CD tại H.

Suy ra IH ⊥ CD

Từ CD ⊥ IH, CD ⊥ SI=> CD ⊥ (SIH)=> CD ⊥ SH

Suy ra 

Lại có 

Từ 

Suy ra 

Từ (1) và (2), suy ra 

Vậy 

12 tháng 7 2019

Đáp án B

Ta có d(K;(SCD))

Ta có 

Có góc giữa SC và đáy là  nên ta có 

Ta có 

18 tháng 12 2021

Viết lại đề đi.

20 tháng 11 2018

1 tháng 12 2019

Đáp án C

Gọi O = AC ∩  BD Kẻ OK ⊥ SC   Do BD  ⊥ (SAC) =>BD ⊥ OK

Do đó d(BC;SC) =OK= a 3 2

∆ S A C   đ ồ n g   d ạ n g   ∆ O K C   ( g - g )

⇒ S A O K = S C O C ⇔ x a 3 2 = x 2 + 12 a 2 a 3

⇒ x 2 = 6 a 2 ⇒ x = a 6   ⇔ S A   = a 6

Khi đó: Kẻ AH  ⊥ SD => AH  ⊥ (SDC) => AH =d(A;(SCD))

Lại có  AB//CD => AB //(SCD) => d(B;(SCD))= d(A;(SCD)=AH

∆ S A D vuông tại A có  1 A H 2 = 1 A S 2 + 1 A D 2 ⇒ A H   = a 2

NV
19 tháng 1 2021

\(SA\perp\left(ABCD\right)\Rightarrow\widehat{SCA}=45^0\Rightarrow AC=SA=a\sqrt{2}\)

\(\Rightarrow AB=a\)

Gọi N là trung điểm SA \(\Rightarrow NM||SB\Rightarrow SB||\left(DMN\right)\)

\(\Rightarrow d\left(DM;SB\right)=d\left(SB;\left(DMN\right)\right)=d\left(B;\left(DMN\right)\right)\)

Mà M là trung điểm AB \(\Rightarrow d\left(B;\left(DMN\right)\right)=d\left(A;\left(DMN\right)\right)\)

Từ A kẻ AH vuông góc DM \(\Rightarrow DM\perp\left(NAH\right)\)

Trong mp (NAH), từ A kẻ \(AK\perp NH\Rightarrow AK=d\left(A;\left(DMN\right)\right)\)

\(\dfrac{1}{AH^2}=\dfrac{1}{AM^2}+\dfrac{1}{AD^2}\Rightarrow AH=\dfrac{AM.AD}{\sqrt{AM^2+AD^2}}=\dfrac{a\sqrt{5}}{5}\)

\(\dfrac{1}{AK^2}=\dfrac{1}{AN^2}+\dfrac{1}{AH^2}\Rightarrow AK=\dfrac{AN.AH}{\sqrt{AN^2+AH^2}}=\dfrac{a\sqrt{7}}{7}\)

16 tháng 5 2021

S A B C D H O K I L T

a) SA vuông góc với (ABCD) => SA vuông góc AD; hình thang ABCD vuông tại A => AD vuông góc AB

=> AD vuông góc (SAB), mà AD nằm trong (SAD) nên (SAB) vuông góc (SAD).

b) AD vuông góc (SAB), BC || AD => BC vuông góc (SAB) => B là hc vuông góc của C trên (SAB)

=> (SC,SAB) = ^CAB

\(SB=\sqrt{AS^2+AB^2}=\sqrt{2a^2+a^2}\)\(=a\sqrt{3}\)

\(\tan\widehat{CAB}=\frac{BC}{SB}=\frac{a}{a\sqrt{3}}=\frac{\sqrt{3}}{3}\)=> (SC,SAB) = ^CAB = 300.

c) T là trung điểm của AD, K thuộc ST sao cho AK vuông góc ST, BT cắt AC tại O, HK cắt AO tại I, AI cắt SC tại L.

BC vuông góc (SAB) => BC vuông góc AH, vì AH vuông góc SB nên AH vuông góc SC. Tương tự AK vuông góc SC

=> SC vuông góc (HAK) => SC vuông góc AI,AL. Lập luận tương tự thì AL,AI vuông góc (SCD).

Dễ thấy \(\Delta\)SAB = \(\Delta\)SAT, chúng có đường cao tương ứng AH và AK => \(\frac{HS}{HB}=\frac{KS}{KT}\)=> HK || BT || CD

=> d(H,SCD) = d(I,SCD) = IL (vì A,I,L vuông góc (SCD)) = \(\frac{IL}{AL}.AL=\frac{CO}{CA}.\frac{SI}{SO}.AL=\frac{1}{2}.\frac{SH}{SB}.\frac{AS.AC}{\sqrt{AS^2+AC^2}}\)

\(=\frac{1}{2}.\frac{SA^2}{SA^2+SB^2}.\frac{AS.AC}{\sqrt{AS^2+AC^2}}=\frac{1}{2}.\frac{2a^2}{2a^2+a^2}.\frac{a\sqrt{2}.a\sqrt{2}}{\sqrt{2a^2+2a^2}}=\frac{a}{3}\)

17 tháng 5 2021

undefined

undefined

 

 


 

 

13 tháng 2 2018

ĐÁP ÁN C

23 tháng 5 2020

3+? =2 trả lời đc thì giải đc

20 tháng 5 2022

S A B C D H O M N P Q K E I

a/ 

Ta có

\(CB\perp AB\) (ABCD là hình vuông)

\(SA\perp\left(ABCD\right)\Rightarrow SA\perp CB\)

\(\Rightarrow CB\perp\left(SAB\right)\) => CB=a là khoảng cách từ C đến mp (SAB)

b/ 

Trong mp (SAD) dựng đường thẳng vuông góc với SD cắt SD tại H

Ta có

\(CD\perp AD\) (ABCD là hình vuông)

\(SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\)

\(\Rightarrow CD\perp\left(SAD\right)\Rightarrow CD\perp AH\)

Mà \(AH\perp SD\)

\(\Rightarrow AH\perp\left(SCD\right)\) => AH là khoảng cách từ A đến mp (SCD)

Xét tg vuông SAD có

\(SD=\sqrt{SA^2+AD^2}=\sqrt{2a^2+a^2}=a\sqrt{3}\) (Pitago)

Ta có

\(AD^2=DH.SD\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

\(\Rightarrow DH=\dfrac{AD^2}{SD}=\dfrac{a^2}{a\sqrt{3}}=\dfrac{a\sqrt{3}}{3}\)

Xét tg vuông ADH có

\(AH=\sqrt{AD^2-DH^2}\) (Pitago)

\(\Rightarrow AH=\sqrt{a^2-\dfrac{a^2}{3}}=\dfrac{a\sqrt{6}}{3}\)

c/ Trong mp (ABCD) Qua O dựng đường thẳng //CD cắt AD tại M và BC tại N => MN//CD (1)

Trong mp (SAD) dựng đường thẳng // AH cắt SD tại Q => MQ // AH

TRong mp (SCD) qua Q dựng đường thẳng //CD cắt SC tại P => QP // CD (2)

Từ (1) và (2) => MN // PQ => M; N; P; Q cùng thuộc 1 mặt phẳng

=> PQ là giao tuyến của mp (MNQP) với mp (SCD)

Trong mp (MNQP) qua O dựng đường thẳng // với MQ cắt QP tại K

Ta có

MQ//AH; OH// MQ => OK//AH

Mà \(AH\perp\left(SCD\right)\)

\(\Rightarrow OK\perp\left(SCD\right)\) => OK là khoảng cách từ O đến mp (SCD)

Xét tứ giác MQKO có

MQ//OK; QP//MN => MQKO là hình bình hành => OK = MQ

Xét tg ACD có

OA=OC (t/c đường chéo hình vuông)

MO//CD

=> MA=MD (trong tg đường thẳng đi qua trung điểm của 1 cạnh // với cạnh thứ 2 thì đi qua trung điểm cạnh còn lai)

Xét tg ADH có

MA=MD (cmt); MQ//AH => QD = QH (trong tg đường thẳng đi qua trung điểm của 1 cạnh // với cạnh thứ 2 thì đi qua trung điểm cạnh còn lai)

=> MQ là đường trung bình của tg ADH

\(\Rightarrow OK=MQ=\dfrac{AH}{2}=\dfrac{1}{2}.\dfrac{a\sqrt{6}}{3}=\dfrac{a\sqrt{6}}{6}\)

d/

Trong mp (SCD) qua H dựng đường thẳng //CD cắt SC tại E => HE//CD

Ta có

AB // CD (Hai cạnh đối hình vuông)

HE // CD

=> AB//HE => A; B; H; E cùng thuộc một mặt phẳng

Trong mp (AHEB) qua e Dựng đường thẳng // AH cắt AB tại I

Ta có 

AH//IE; AB//HE => AHEB là hình bình hành => IE=AH

Ta có

\(SA\perp\left(ABCD\right)\Rightarrow SA\perp AB\)

\(AB\perp AD\) (ABCD là hình vuông)

=> \(AB\perp\left(SAD\right)\Rightarrow AB\perp AH\)

Mà AH//IE

\(\Rightarrow AB\perp IE\) (1)

Ta có

\(AH\perp\left(SCD\right)\) (cmt); mà AH//IE \(\Rightarrow IE\perp\left(SCD\right)\Rightarrow IE\perp SC\) (2)

Từ (1) và (2) => IE là khoảng cách giữa AB và SC

\(\Rightarrow IE=AH=\dfrac{a\sqrt{6}}{3}\)