K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2019

Đáp án A

Gọi N là trung điểm của MD, khi đó N là tâm đường tròn ngoại tiếp tam giác vuông ADM.

Dựng đường thẳng Δ đi qua N và song song với SAΔ là trục đường tròn ngoại tiếp tam giác ADM.

Dựng mặt phẳng trung trực (P) của SA, P ∩ Δ = I , khi đó I là tâm của mặt cầu ngoại tiếp hình chóp SADM, bán kính R = IA .

15 tháng 11 2018

Đáp án C

Gọi O là trung điểm của SD. Ta có:

A D = D M = a 2  và A D = 2 a ⇒ A M ⊥ D M  

Lại có D M ⊥ S A ⇒ D M ⊥ S A M ⇒ D M ⊥ S M  

Vì tam giác SAD vuông tại A nên OS = OD = OA. Tương tự với tam giác SMD nên OS = OD = OM.

Vậy O là tâm mặt cầu ngoại tiếp hình chóp S.ADM. Khi đó R = S D 2 = S A 2 + D A 2 2 = a 6 2 .

15 tháng 12 2018

8 tháng 2 2019

14 tháng 6 2017

5 tháng 12 2019

Đáp án C

27 tháng 2 2018

Đáp án đúng : C

3 tháng 3 2018

Đáp án D.

21 tháng 3 2019

Chọn A.

Gắn tọa độ Oxyz, với A(0;0;0), B(1;0;0), D(0;3;0), S(0;0;1)

Khi đó C ( 1 ; 3 ; 0 ) ⇒  Trung điểm M của BC là M ( 1 ; 3 2 ; 0 ) .  

Ta có

SM → = ( 1 ; 3 2 ; - 1 ) , SD →   = ( 0 ; 3 ; - 1 ) ⇒ [ SM →   ; SD → ] = ( 3 2 ; 1 ; 3 ) .  

Suy ra n ⃗ ( SDM ) = ( 3 2 ; 1 ; 3 )  mà n ⃗ ( ABCD ) = n ⃗ ( Oxy ) = ( 0 ; 0 ; 1 ) ,  

ta được

cos ( SDM ^ ) ;   ( ABCD )   =   n → ( SDM ) . n → ( ABCD ) n → ( SDM ) . n → ( ABCD ) = 6 7 .

24 tháng 5 2018

Chọn C