K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2018

Đáp án A

23 tháng 7 2017

Đáp án A

Kẻ   M N ∥ B C   N ∈ C D ,    N P ∥ S C   P D ,   M Q ∥ S B   Q ∈ S A

⇒ m p a  cắt khối chóp S.ABCD   theo thiết diện là  MNPQ

Ta có M A A B = A Q S A = N D C D = x ⇒ S Q S A = S P S D = 1 − x  (Định lý Thalet)

  Δ A M N = Δ A D N ⇒ V Q . A M N = V P . A D N = x V S . A M N = x 2 V S . A M N D = x 2 2 V

  S N . A P Q = 1 3 d N ; S A D . S Δ A P Q = x 1 − x × V N . S A D = x 2 1 − x 2 V

Do đó   V A Q M . D P N = V Q . A M N + V P . A N D + V N . A P Q = 3 x 2 − x 3 2 × V = 4 27 V

 . ⇒ x 3 − 3 x 2 + 8 27 = 0 ⇒ x = 1 3 Vậy   P = 1 − x 1 + x x = 1 3 = 1 2

2 tháng 8 2019

Đáp án B

26 tháng 7 2019

Đáp án D

Ta có (BCM) cắt (SAD)   theo giao tuyến  M N / / A D

V S N M B C V S A B C D = V S M B C + V S M N C V S A B C D

= 1 2 V S M B C V S A B C + V S N M C V S A C D

= 1 2 S M S A + S M S A S N S D = 1 2

⇒ S M S A 2 + S M S A − 1 = 0

⇒ S M S A = 5 − 1 2 ⇔ a − x a = 5 − 1 2

⇒ x = 3 − 5 a

21 tháng 6 2018

16 tháng 7 2019

Đáp án B

A C = 2 S A = 2 tan 60 0 = 2 3 V = 1 3 .2 3 .1. 3 = 2

 

22 tháng 1 2017

 

 

 

 

 

 

Ta có  S C D ∩ A B C D = C D

C D ⊥ S A C D ⊥ A C ⇒ C D ⊥ S A C ⇒ S C ⊥ C D

Vì  S C ⊥ C D , S C ⊂ S C D A C ⊥ C D , A C ⊂ A B C D

Nên  S C D , A B C D ^ = S C A ^ = 45 o

Dễ thấy ∆ S A C  vuông cân tại A

Suy ra SA = AC =  a 2

Lại có

  S M C D = 1 2 M C . M D = 1 2 a . a = a 2 2

Do đó

  V = V S . M C D = 1 3 S M C D S A = 1 3 . a 2 2 . a 2 = a 3 2 6

Ta có

  B D ∥ M N M N ⊂ S M N ⇒ B D ∥ S M N

Khi đó d( SM,BD ) = d( SM, (SMN) ) = d( D, (SMN) ) = d( A, ( SMN) )

Kẻ  A P ⊥ M N , P ∈ M N A H ⊥ S P , H ∈ S P

Suy ra  A H ⊥ S M N ⇒ d A S M N = A H

∆ S A P  vuông tại A có

1 A H 2 = 1 S A 2 + 1 A P 2 = 1 S A 2 + 1 A N 2 + 1 A M 2 = 1 2 a 2 + 1 a 2 4 + 1 a 2 = 11 2 a 2

Do đó d = d( SM, BD ) = AH =  a 22 11

Đáp án A

11 tháng 9 2018

15 tháng 7 2018

 

Vẽ S H ⊥ A C  tại H.

Khi đó: ( S A C ) ⊥ ( A B C D ) ( S A C ) ⊥ ( A B C D ) = A C S H ⊂ ( S A C ) S H ⊥ A C

⇒ S H ⊥ ( A B C D ) ⇒ V = 1 3 S H . S A B C D

Theo đề ∆ S A C  vuông tại S nên ta có:

S C = A C 2 - S A 2 = 6 a 2

và  S H = S A . S C A C

= 2 a 2 . 6 a 2 2 a = 6 a 4

Vậy  V = 1 3 S H . S A B C D = 6 a 3 12

Chọn đáp án A.