K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2017

Chọn đáp án B.

Ta có:  S A ⊥ S B S A ⊥ S C ⇒ S A ⊥ ( S B C )

Vì vậy áp dụng công thức cho trường hợp khối chóp có cạnh bên vuông góc đáy có:

 

23 tháng 1 2019

7 tháng 11 2021

Bán kính mặt cầu ngoại tiếp hình chóp đã cho là R = \(\dfrac{1}{2}\sqrt{a^2+b^2+c^2}\).

Diện tích mặt cầu cần tìm là S = 4\(\pi\)R= (a2+b2+c2)\(\pi\).

Thể tích khối cầu cần tìm là V = 4/3.\(\pi\)R3 = \(\dfrac{\pi}{6}\sqrt{a^2+b^2+c^2}^3\).

13 tháng 8 2016

+)Gọi H là chân đường cao hạ từ A - -> BC 
Tam giác AHC vuông tại H nên 
AH = √(a² -a²/4) = a√3/2 
Diện tích tam giác ABC là S(ABC) = 1/2.AH.BC= 1/2.a²√3/2 
(dvdt) 
+)Từ S hạ SK ┴ AH , Kết hợp AH ┴ BC ta có SK ┴ (ABC) 
Hay SK là đường cao của hình chóp đều SABC 
+) Bài cho góc giữa các mặt bên với đáy là 60 độ nên 
góc giữa (SH,HK) = 60 độ 
Tam giác vuông SKH có SK = HK.tan(60) 
Tam giác vuông BKH có HK = a/2.tan(30) = a√3/6 
- - > SK = a√3/6.tan(60) = a/2 
Vậy V(SABC) =1/3.SK.S(ABC) = 1/3.a/2.1/2.a²√3/2 
= a³√3/24 (dvtt)

AH
Akai Haruma
Giáo viên
1 tháng 2 2017

Lời giải:

Gọi $H$ là chân đường cao kẻ từ $S$ xuống mặt phẳng $(ABC)$

Ta có \(\left\{\begin{matrix} SH\perp AB\\ SA\perp AB\end{matrix}\right.\Rightarrow AB\perp (SHA)\rightarrow AB\perp HA\)

Tương tự \(BC\perp HC\). Kết hợp với \(ABC\) vuông cân tại $B$ suy ra \(ABCH\) là hình vuông

\(AH\parallel (SBC)\Rightarrow d(A,(SBC))=d(H,(SBC))\)

Kẻ \(HT\perp SC\). Có \(\left\{\begin{matrix} SH\perp BC\\ HC\perp BC\end{matrix}\right.\Rightarrow BC\perp (SHC)\Rightarrow BC\perp HT\)

Do đó \(HT\perp (SBC)\Rightarrow d(H,(SBC))=HT=\sqrt{\frac{SH^2.HC^2}{SH^2+HC^2}}=\sqrt{\frac{SH^2.AB^2}{SH^2+AB^2}}=\sqrt{2}\Rightarrow SH=\sqrt{6}a\)

Từ trung điểm $O$ của $AC$ dựng trục vuông góc với mặt phẳng $(ABC)$. Trên trục đó ta lấy điểm $I$ là tâm mặt cầu ngoại tiếp.

\(IS^2=IA^2=IH^2\Leftrightarrow (\overrightarrow{IO}+\overrightarrow{OH}+\overrightarrow{HS})^2=IO^2+OH^2\)

\(\Leftrightarrow HS^2+2\overrightarrow{IO}.\overrightarrow{HS}=0\)

Do \(\overrightarrow {SH}\parallel \overrightarrow {IO}\Rightarrow \overrightarrow {IO}=k\overrightarrow{SH}\). Thay vào PT trên có $k=\frac{1}{2}$

\(\Rightarrow IO=\frac{\sqrt{6}a}{2}\Rightarrow IA=\sqrt{IO^2+AO^2}=\sqrt{3}a\)

\(\Rightarrow S_{\text{mặt cầu}}=4\pi R^2=12a^2\pi\)

6 tháng 12 2017

câu trả lời sai

29 tháng 5 2017