K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2017

23 tháng 12 2017

17 tháng 4 2019

16 tháng 2 2017

23 tháng 5 2017

Đáp án: A.

§  Hướng dẫn giải:

Gọi N là trung điểm của cạnh đáy AC.

Khi đó BC // (SMN)

⇒ d(SM,BC)=d(B,(SMN))=d(A,(SMN))

Gọi H là hình chiếu vuông góc của A trên đoạn SM.

Ta có thể chứng minh được M N ⊥ ( S A M )

từ đó  A H ⊥ ( S M N )

24 tháng 6 2023

Bạn chỉ mình tính AM được không

1 tháng 4 2016

Hai mặt phẳng (SAB) và (SAC) cùng vuông góc với (ABC) \(\Rightarrow SA\perp\left(ABC\right)\)

\(AB\perp BC\Rightarrow SB\perp BC\Rightarrow\widehat{SBA}\) là góc giữa 2 mặt phẳng (SBC) và mặt phẳng (ABC)

\(\Rightarrow\widehat{SBA}=60^o\)

\(\Rightarrow SA=AB.\tan\widehat{SBA}=2a\sqrt{3}\)

Mặt phẳng qua SM và song song với BC, cắt AC tại N

\(\Rightarrow MN||BC\) và N là trung điểm của \(AC\\ \)

\(MN=\frac{BC}{2}=a;BM=\frac{AB}{2}=a\)

Diện tích \(S_{BCNM}=\frac{\left(BC+MN\right).BM}{2}=\frac{3a^2}{2}\)

Thể tích \(V_{S.BCNM}=\frac{1}{3}S_{BCNM}.SA=a^3\sqrt{3}\)

Kẻ đường thẳng \(\Delta\) đi qua N, song song với AB

Hạ \(AD\perp\Delta\left(D\in\Delta\right)\Rightarrow AB||\left(SND\right)\)

                                 \(\Rightarrow d\left(AB;SN\right)=d\left(AB,\left(SND\right)\right)=d\left(A,\left(SND\right)\right)\)

Hạ \(AH\perp SD\left(H\in SD\right)\Rightarrow AH\perp\left(SND\right)\Rightarrow d\left(A,\left(SND\right)\right)=AH\)

Tam giác SAD vuông tại A : \(\begin{cases}AH\perp SD\\AD=MN=a\end{cases}\)

                                            \(\Rightarrow d\left(AB,SN\right)=AH=\frac{SA.AD}{\sqrt{SA^2+AD^2}}=\frac{2a\sqrt{39}}{13}\)

 

31 tháng 3 2016

1242

 

16 tháng 12 2017

Đáp án: C

16 tháng 8 2017

16 tháng 8 2018

Đáp án A