Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Gọi M là trung điểm của AC. Tam giác ABC vuông tại B, do đó M là tâm đường tròn ngoại tiếp tam giác ABC.
Gọi O là trung điểm của AC, suy ra OM//SA
=> OM là trục của đường tròn ngoại tiếp tam giác ABC,
=> OA = OB = OC
Mặt khác, tam giác SAC vuông tại A, do đó OA = OS = OC
Vậy O là tâm mặt cầu ngoại tiếp hình chóp S.ABC có thể tích
A là hình chiếu của S lên mặt phẳng (ABC), do đó góc
Đáp án A
Gọi M là trung điểm của AC. Tam giác ABC vuông tại B, do đó M là tâm đường tròn ngoại tiếp tam giác ABC.
Gọi O là trung điểm của AC, suy ra OM // SA. Mà
Đáp án C
B C = A B . tan 30 0 = a 3 3 ⇒ A C = a 2 3 + a 2 = 2 3 3 a V = 1 3 . S A . 1 2 . A B . B C = 1 3 . S A . 1 2 . a . a 3 3 = a 3 3 36 ⇒ S A = a 2 S B = a 2 4 + a 2 = a 5 2 V = 1 3 . d ( A ; S B C ) . 1 2 . S B . B C = 1 3 . d . 1 2 . a 5 2 . a 3 3 = a 3 3 36 ⇒ d = a 5 5
Đáp án B
Dựng hình vuông ABCH
Ta có: A B ⊥ A H A B ⊥ S A ⇒ A B ⊥ S H , tương tự B C ⊥ S H
Do đó S H ⊥ A B C
Lại có A H / / B C ⇒ d A ; S B C = d H ; S B C
Dựng H K ⊥ S C ⇒ d H ; S B C − H K = a 2
Do đó 1 S H 2 = 1 H K 2 − 1 H C 2 ⇒ S H = a 6 .
Tứ giác ABCH nội tiếp nên R S . A B C = R S . A B C H = S H 2 4 + r 2 d
= S H 2 4 + A C 2 2 = a 3 ⇒ S = 4 π R 2 = 12 π a 2 .
Đáp án C
Dựng hình vuông ABCH
Ta có A B ⊥ A H A B ⊥ S A ⇒ A B ⊥ S H , tương tự B C ⊥ S H
Do đó S H ⊥ A B C
Lại có A H / / B C ⇒ d A ; S B C = d H ; S B C
Dựng H K ⊥ S C ⇒ d H ; S B C = H K = a 2
Do đó 1 S H 2 = 1 H K 2 − 1 H C 2 ⇒ S H = a 30 5
Tứ giác ABCH nội tiếp nên R S . A B C = R S . A B C H = S H 2 4 + r d 2
= S H 2 4 + A C 2 2 = a 2 ⇒ S = 4 π R 2 = 8 π a 2