Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) SG là trục đường tròn ngoại tiếp tam giác đều ABC nên SG ⊥ (ABC). Ta có
Vậy khoảng cách từ S tới mặt phẳng (ABC) là độ dài của đoạn SG = a
Ta có CG ⊥ AB tại H. Vì GH là đoạn vuông góc chung của AB và SG, do đó
mà
nên
Chọn đáp án B
Gọi là H hình chiếu của đỉnh S xuống mặt phẳng (ABC). Khi đó, ta có
Ta có
Tương tự, ta cũng chứng minh được
Từ đó suy ra
Do SH ⊥ AB, BH ⊥ AB nên suy ra góc giữa (SAB) và (ABC) là góc SBH. Vậy SBH = 60 0
Trong tam giác vuông ABH, ta có
Trong tam giác vuông SHB, ta có
Chọn A
Gọi H là trung điểm của AC. Đỉnh S cách đều các điểm A, B, C
=> SH ⊥ (ABC)
Xác đinh được
Ta có MH // SA
Gọi I là trung điểm của AB => HI ⊥ AB
và chứng minh được HK ⊥ (SAB)
Trong tam giác vuông SHI tính được
Đáp án B.
Gọi H là trung điểm AB, G là trọng tâm tam giác ABC, K là trung điểm SC.
Ta có:
SH = SC => HK là trung trực SC. Qua O kẻ trục d//SH => d ⊥ (ABC)
Gọi
=> I là tâm mặt cầu ngoại tiếp hình chóp SABC
Ta có
Xét ∆ HIG vuông tại G:
Vậy thể tích khối cầu ngoại tiếp hình chóp
Đáp án A
SM = M B tan 60 0 = 3 6
IG = x ⇒ JM = IG ⇒ SI = 1 12 + ( 3 6 + x ) 2 , IA = 1 3 + x 2
SI = IA ⇒ x 2 + 1 4 = ( x 2 + 3 3 x + 1 2 ) ⇒ x = 1 2 3 ⇒ R = 5 12
V = 4 3 πR 3 = 5 15 π 54
Chọn C.
Gọi H là trung điểm của BC, suy ra .
Gọi K là trung điểm AC
Chắc là tam giác SAB nằm trong mp vuông góc với đáy?
Gọi H là trung điểm AB \(\Rightarrow SH\perp AB\Rightarrow SH\perp\left(SAB\right)\)
\(\Rightarrow SH=d\left(S;\left(ABC\right)\right)\)
\(SH=\dfrac{AB\sqrt{3}}{2}=a\sqrt{3}\)