Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Tam giác ABM có A M = B M A B C ⏜ = 60 ° ⇒ Δ A B M đều cạnh a
Gọi H là tâm đường tròn ngoại tiếp Δ A B M
Mà S A = S B = S M ⇒ H là hình chiếu của S trên m p A B M
Tam giác SAH vuông tại H, có A H = a 3 3 ; S A = a 39 3
Suy ra S H = S A 2 − A H 2 = a 39 3 2 − a 3 3 2 = 2 a
Vậy d S ; ( A B C = S H = 2 a
Gọi H là trung điểm của AC
Đỉnh S cách đều các điểm A, B, C
Xác đinh được
Ta có MH//SA
Gọi I là trung điểm của AB
và chứng minh được
Trong tam giác vuông SHI tính được
Chọn A.
Đáp án A
Gọi I, H lần lượt là hình chiếu của A lên BC và SI
Ta có: 1 A I 2 = 1 A B 2 + 1 A C 2 = 1 2 a 2 + 1 3 a 2 = 13 36 a 2
1 A H 2 = 1 S A 2 + 1 A I 2 = 1 4 a 2 + 1 36 a 2 = 61 144 a 2
⇒ A I = 12 a 61 ⇒ d = A I = 12 a 61
Gọi N là trung điểm của BC, dựng hình bình hành ABNP.
Ta có:
Mà
Chọn: B
Đáp án A
Do S A ⊥ A B C nên góc giữ SC và A B C là góc S C A ^ = 60 °
Vì Δ A B C vuông tại B nên A C = 5 a ⇒ S A = 5 a 3
Gọi N là trung điểm BC nên M N / / A B ⇒ A B / / S M N
d A B , S M = d A B , S M N = d A , S M N .
Từ A kẻ đường thẳng song song vơi BC cắt MN tại D.
Do B C ⊥ A B ⇒ B C ⊥ M N ⇒ A D ⊥ M N .
Từ A kẻ AH vuông góc vơi SD
Ta có M D ⊥ A D M D ⊥ S A ⇒ M D ⊥ S A D ⇒ M D ⊥ A H
Mà A H ⊥ S D ⇒ A H ⊥ S M D hay A H ⊥ s m n ⇒ d A , S M N = A H
Do A D = B N = 1 2 B C = 2 a .
Xét Δ S A D có 1 A H 2 = 1 S A 2 + 1 A D 2 = 1 75 a 2 + 1 4 a 2 = 79 300 a 2
⇒ d A B , S M = A H = 10 237 a 79 = 10 3 a 79
Đáp án A