Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Chọn mp(SAB) có chứa MN
Ta có: \(AB\subset\left(SAB\right)\)
\(AB\subset\left(ABCD\right)\)
Do đó: \(\left(SAB\right)\cap\left(ABCD\right)=AB\)
Gọi P là giao điểm của MN với AB
=>P là giao điểm của MN với mp(ABCD)
b: Ta có: SN+NB=SB
=>2NB+NB=SB
=>SB=3NB
=>\(\dfrac{SN}{SB}=\dfrac{2}{3}\)
Xét ΔSBA có P,M,N thẳng hàng
nên \(\dfrac{PB}{PA}\cdot\dfrac{MA}{MS}\cdot\dfrac{NS}{NB}=1\)
=>\(\dfrac{PB}{PA}\cdot1\cdot2=1\)
=>\(\dfrac{PB}{PA}=\dfrac{1}{2}\)
=>B là trung điểm của AP
Trong mp(ABCD), gọi O là giao điểm của AC và BD
Ta có: ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Xét ΔAPC có
B,O lần lượt là trung điểm của AP,AC
=>BO là đường trung bình của ΔAPC
=>BO//PC
=>BD//PC
Ta có: PC//BD
BD\(\subset\)(SBD)
PC không nằm trong mp(SBD)
Do đó: PC//(SBD)
Gọi O là giao điểm AC và BD \(\Rightarrow\) O là trung điểm AC
\(\Rightarrow\) G là trọng tâm tam giác ABC
\(\Rightarrow BG=\dfrac{2}{3}BO=\dfrac{2}{3}.\dfrac{1}{2}BD=\dfrac{1}{3}BD\)
\(\Rightarrow\dfrac{BG}{BD}=\dfrac{1}{3}\)
Lại có: \(SM=2MB\Rightarrow2MB=SB-MB\Rightarrow MB=\dfrac{1}{3}SB\Rightarrow\dfrac{MB}{SB}=\dfrac{1}{3}\)
\(\Rightarrow\dfrac{BG}{BD}=\dfrac{BM}{SB}=\dfrac{1}{3}\Rightarrow MG||SD\) (Talet đảo)
Mà \(SD\in\left(SAD\right)\Rightarrow MG||\left(SAD\right)\)
\(\left\{{}\begin{matrix}S=\left(SAC\right)\cap\left(SBD\right)\\O=\left(SAC\right)\cap\left(SBD\right)\end{matrix}\right.\) \(\Rightarrow SO=\left(SAC\right)\cap\left(SBD\right)\)
b.
Trong mp (SAC), nối MO kéo dài cắt SC kéo dài tại H
\(\left\{{}\begin{matrix}H\in MO\\H\in SC\in\left(SCD\right)\end{matrix}\right.\) \(\Rightarrow H=MO\cap\left(SCD\right)\)
a) Gọi \(O=AC\cap BD\). Khi đó \(O\in\left(SAC\right)\cap\left(SBD\right)\). Lại có \(S\in\left(SAC\right)\cap\left(SBD\right)\) nên SO chính là giao tuyến của (SAC) và (SBD).
b) Trong mp (AMNK) cho \(AN\cap MK=L\). Do \(AN\subset\left(SAC\right),MK\subset\left(SBD\right)\) nên \(L\in\left(SAC\right)\cap\left(SBD\right)\) nên \(L\in SO\). \(\Rightarrow\) L là trọng tâm tam giác SAC \(\Rightarrow\dfrac{SL}{LO}=2\). Mà \(\dfrac{SM}{MB}=2\) nên \(\dfrac{SL}{LO}=\dfrac{SM}{MB}\Rightarrow\) LM//BO hay MK//BD, suy ra đpcm.
1: \(O\in\left(SAC\right)\cap\left(SBD\right)\)
=>\(\left(SAC\right)\cap\left(SBD\right)=SO\)
AB//CD
S thuộc (SAB) giao (SCD)
=>(SAB) giao (SCD)=xy, xy qua S, xy//AB//DC
2:
Xét ΔSBC có SM/SB=SN/SC
nên MN//BC
=>MN//AD
=>AMND là hình thang
Xét ΔSBD có BM/BS=BO/BD
nên MO//SD
=>MO//(SAD)