K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2017

Kẻ đường chéo MP

Ta được SMQX= SMPX

SMNY=SMPY

=> SMXPY= SMPX + SMPY

Khi đó \(S_{MXPY}=\dfrac{1}{2}S\)

Nhớ tick nhé !

3 tháng 5 2017

Sau khi kẻ đường thẳng MP ta có:

\(\Delta MPQ=\Delta MPN\) (cạnh-cạnh-cạnh)

=> \(\dfrac{1}{2}\)SMPQ = \(\dfrac{1}{2}S_{MPN}\)

hay \(\Delta MPX=\Delta MPY\).

\(S_{MPX}+S_{MPY}=S_{MXPY}=S_{MXQ}+S_{MYN}\) nên SMXPY = \(\dfrac{1}{2}S\).

Vậy SMXPY = \(\dfrac{1}{2}S\).

3 tháng 5 2017

Vì SGKF=\(\dfrac{1}{2}.S_{GHF}\) (1)

SGFL= \(\dfrac{1}{2}.S_{GFT}\) (2)

Cộng (1) và (2) vế theo vế:

=> SGKL=\(\dfrac{1}{2}.\left(S_{GHF}+S_{GFT}\right)=\dfrac{1}{2}.S_{GTH}=\dfrac{1}{2}S\)

Nhớ tick nhé ,thank nhiều

3 tháng 5 2017

* Phương án đúng:

(D). S

* Giải thích:

Đường cao của hình thang cũng chính bằng độ dài đường cao của hai tam giác QSP và NRO.

Gọi độ dài đường cao là h (h>0)

SQSP= \(\dfrac{1}{2}.h.QP\)

SNRO= \(\dfrac{1}{2}.h.NO\)

SNRO+SQSP=\(\dfrac{1}{2}.h.NO\)+\(\dfrac{1}{2}.h.QP\)= \(\dfrac{1}{2}.h.\left(NO+QP\right)\) (1)

Ta có:

SNOPQ=S=\(\left(NO+QP\right).h.\dfrac{1}{2}\) (2)

Từ (1) và (2) => SNRO+SQSP=S=\(\dfrac{1}{2}.h.\left(NO+QP\right)\)

3 tháng 5 2017

* Phương án đúng:

(D). S

10 tháng 6 2017

a)Ta có E là trung điểm của CM (gt)
F là trung điểm của CB (gt)
\(\Rightarrow\) EF là đường trung bình của (định nghĩa đường trung bình của tam giác)
\(\Rightarrow\) EF//MB (tính chất đường trung bình của tam giác)
hay EF//AB
lại có K là trung điểm của AD (gt)
F là trung điểm của CB (gt)
\(\Rightarrow\) KF là đường trung bình của (...)
\(\Rightarrow\) KF//AM (t/c ...)
hay KF//AB
nên EF//KF (vì cùng // với AB)
\(\Rightarrow\) tứ giác EFFIK là hình thang (Định nghĩa hình thang)

Gọi N là trung điểm của AM, nối KM
Ta có N là trung điểm của AM (cách dựng)
K là trung điểm của AD (gt)
\(\Rightarrow\) NK là đường trung bình của
nên NK//DM (t/c....)
mà EN là đường trung bình của (E,I là trung điểm của MC,AM)
\(\Rightarrow\) EI//AC (t/c...)
lại có là những tam giác đều (gt)
\(\Rightarrow\)
\(\Rightarrow\) AC//DM
tức là NK//EN (cùng //AC//DM)
do đó 3 điểm E,K,N thẳng hàng (theo tiên đề Ơ-clit)
(2góc đồng vị của AC//EN)
(2 góc đồng vị của KF//AM)
nên
C/m tương tự, lấy P là trung điểm của BM ta cũng được
Hình thang EFIK có
Vậy EFIK là hình thang cân (dấu hiệu nhận biết)

b) Ta có EFIK là hình thang cân (kq câu a)
\Rightarrow EI=KF (tính chất 2 đường chéo trong hình thang cân)
E là trung điểm của CM, I là trung điểm của DM (gt)
\(\Rightarrow\) EI là đường trung bình của tam giác CMD
\(\Rightarrow\) EI=
Vậy KF=

5 tháng 8 2021

a) Trong tam giác ADC, ta có:

E là trung điểm của AD (gt)

I là trung điểm của AC (gt)

Nên EI là đường trung bình của ∆ ABC

⇒ EI // CD (tính chất đường trung bình của tam giác)

Trong tam giác ABC ta có:

I là trung điểm của AC

F là trung điểm của BC

Nên IF là đường trung bình của ∆ ABC

⇒ IF // AB (tính chất đường trung bình của tam giác)

b) Câu b đou

5 tháng 8 2021

em nào địt với anh ko

16 tháng 6 2015

a) phương trình

<=>  x \(\in\) Z và x \(\le\) \(\frac{4x+1}{9}\) < x +1  (1)

 (1) <=> 0 \(\le\) \(\frac{4x+1}{9}-x\) < 1

<=> 0 \(\le\) 4x + 1 - 9x  < 9 <=> 0 \(\le\) 1 - 5x < 9 <=> \(-\frac{9}{5}\) < x \(\le\) \(\frac{1}{5}\)

Mà x nguyên nên x = -1; 0

 

GV
29 tháng 4 2017

A B C D M N T h

a) dt(ABMD) = dt(ABCD) - dt(CMD)

Mà dt(CMD) = 1/2 MC.h = 1/2 . 2/3 . BC .h = 1/3 dt(ABCD) = 1/3.S

(với h là đường cao hạ từ A xuống BC của hình bình hành ABCD)

Suy ra dt(ABMD) = S - 1/3 S = 2/3. S

b) dt(ABNT) = BN.h = 2/3 BC . h = 2/3 . S