K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2018

24 tháng 6 2019

a: Xét tứ giác ABQM có 

AM//QB

AM=QB

DO đó: ABQM là hình bình hành

mà MA=MQ

nên ABQM là hình thoi

b: Xét tứ giác ANBQ có 

AN//BQ

AN=BQ

Do đó: ANBQ là hình bình hành

Suy ra: AQ//BN

c: Xét tứ giác ANPB có 

AN//BP

AN=BP

Do đó: ANPB là hình bình hành

mà NA=NP

nên ANPB là hình thoi

Xét ΔQPA có
AB là đường trung tuyến

AB=QP/2

Do đó:ΔQPA vuông tại A

hay \(\widehat{QAP}=90^0\)

a)

{BC=AD=2AB=2AE=2FDBC=2BE=2EC{BC=AD=2AB=2AE=2FDBC=2BE=2EC⇒AB=BE=EC=CD=FD=AF⇒AB=BE=EC=CD=FD=AF

tứ giác ECDF có: {FD//ECFD=EC{FD//ECFD=EC ⇒⇒ tứ giác ECDF là hình bình hành.

b)

tam giác DEC có: {DC=ECˆA=ˆC=60o{DC=ECA^=C^=60o⇒⇒tam giác DEC là tam giác đều.

⇒ˆDCE=ˆEDC=ˆDEC=60o⇒DCE^=EDC^=DEC^=60o

vì AD//BC nên ˆADC+ˆDCE=180o⇒ˆADC=1200ADC^+DCE^=180o⇒ADC^=1200

mà ˆADC=ˆADE+ˆEDCADC^=ADE^+EDC^

⇒ˆADE=60o⇒ADE^=60o

đồng thời ˆBAC=60oBAC^=60o

nên ˆADE=ˆBACADE^=BAC^

mặt khác: BE//AD

nên tứ giác ABED là hình thang cân.

c) c/m tương tự câu a, ta có: tứ giác ABEF là hình bình hành.

⇒⇒AB//FE ⇒ˆAEF=ˆEAB⇒AEF^=EAB^(1)

tam giác AFE có AF=FE nên tam giác AFE là tam giác cân

⇒ˆFAE=ˆFEA⇒FAE^=FEA^(2)

từ (1) và (2) ⇒ˆBAE=ˆEAF=ˆFEA=60o2=30o⇒BAE^=EAF^=FEA^=60o2=30o

tam giác FED có: {FD=DC=DEˆFDE=60o{FD=DC=DEFDE^=60o

do đó tam giác FED là tam giác đều.

⇒ˆFDE=ˆDEF=ˆEFD=180o3=60o⇒FDE^=DEF^=EFD^=180o3=60o

ta có: ˆAED=ˆAEF+ˆFED=30o+600=900

6 tháng 11 2021

\(\widehat{M}=360^0-80^0-55^0-60^0=165^0\)

a) từ me vuông góc fc ab vuông góc fc=> me song song ab
=> mn song song ab => mn song song dc (1)
mà ab song song dc (do abcd là hbh)
từ ad ss bc (do .....)
=> md sscn (2) => ma ss bn (5)
từ (1)(2) => mndc là hbh (..) (3)
từ ab =2ad => ab=am=mdmà ab =dc (..) => md=dc (4)_
từ (3)(4) => mndc là hình thoi (...)
b) từ ne ss ab (cmt)
=> ne ss bf
mà nb = nc => fe=ec => e là tđ cf
c) từ abcd là hbh => a = dcb =60
từ mn ss ab và (5) => abnm là hbh (..)
ta có : mcd= 60\ 2 = 30
mà dcf + mcf +mcd
90=30 + mcf
mcf = 60 (6)
trong tam giác mfc có me là đcao đồng thời là đường tt
=> tam giác mfc cân tại M (7)
từ (6)(7) => mfc đều
d)từ fmc đều => fm=fc=> f thuộc trung trực mc
từ mn =nc => n thuộc trung trực mc
từ dm =dc => d thuộc trung trực mc

từ 3 ý trên => f,n,d thẳng hàng
(nếu đúng mình xin 1 tích nha :>> )

Giải thích các bước giải:

Ta có tứ giác ABCD là hbh

=> AD=BC; AD//BC

Mà M và N là trung điểm của AD và BC

=> MD=NC

Xét tứ giác MNCD có ;

MD//NC

MD=NC

=> Tứ giác MNCD là hbh

Mà MD=CD=AD/2

=> Tứ giác MNCD là hình thoi

b) Ta có tứ giác MNCD là hình thoi

=> CD//MN

Xét ΔBFC có: EN//BF

N là trung điểm của BC

=> EN là đườngtrung bình của tam giác BFC

=> E là trung điểm của CF

c) Ta có tứ giác MNCD là hình thoi

=> CM là tia phân giác của gốc BCD

=> Góc BCA=Góc BCD/2=60/2=30

Xét tam giác BFC có NE//BF

                                 NE⊥FC

=> BF⊥FC

=> Góc BCF=90- góc FBC=90-góc BAD=30

=> Góc FCM=Góc FCB+ góc BCM=60

Xét tam giác MCF có ME vừa là đường cao vừa là trung tuyến

=> ΔMCF cân tại M

Mà góc MCF=60

=>ΔMCF đều

d) Ta có : FM=FC( do ΔMCF đều) => F∈ trung trực của MC

DM=DC(=AD/2) =>D∈trung trực của MC

Có NC=NM=> N∈trung trực của MC

=> F;N;D cùng thuộc trung trực của MC

=> F;N;D thẳng hàng

image

21 tháng 11 2021

Answer:

Bài 7:

Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)

\(\Leftrightarrow\widehat{A}+120^o+60^o+90^o=360^o\)

\(\Leftrightarrow\widehat{A}=90^o\)

Gọi góc ngoài đỉnh A là \(\widehat{DAx}\)

\(\Rightarrow\widehat{DAx}=180^o-\widehat{DAB}\)

\(\Rightarrow\widehat{DAx}=180^o-90^o=90^o\)

A B x D C

21 tháng 11 2021

Answer:

Bài 8:

a/ P là trung điểm BC (giả thiết)

N là trung điểm AC (giả thiết)

=> NP là đường trung bình

=> NP // AB hay NP // MB và \(NP=\frac{1}{2}AB\left(1\right)\)

Mà M là trung điểm của AB (giả thiết)

=> AM = MB = \(\frac{1}{2}AB\left(2\right)\)

Từ (1) và (2) => NP // MB và NP = MB

=> Tứ giác BMNP là hình bình hành

b/ Ta có: AM = NP và NP // MB hay NP // AM

=> AMPN là hình bình hành

Mà ta có \(\widehat{BAC}=90^o\)

=> AMPN là hình chữ nhật

=> AM = PN, AN = MP

c/ Vì Q đối xứng P qua N => PQ vuông góc AC, PN = NQ

Tương tự ta có: PR vuông góc AB, RM = MP

Ta xét hai tam giác RAM và AQN:

AM = QN (=NP)

\(\widehat{AMR}=\widehat{QNA}=90^o\)

RM = AN (=NP)

=> Tam giác RAM = tam giác AQN (c.g.c)

\(\Rightarrow\widehat{MAR}=\widehat{NQA}\)

Ta có: \(\widehat{NQA}+\widehat{QAN}=90^o\)

\(\Rightarrow\widehat{MAR}+\widehat{QAN}=90^o\)

Ta có: \(\widehat{BAC}=90^o\)

\(\Rightarrow\widehat{MAR}+\widehat{QAN}+\widehat{BAC}=180^o\)

=> R, A, Q thẳng hàng

C Q N M B R A P

15 tháng 10 2023

Do MNPQ là hình bình hành nên: 

\(\widehat{M}=\widehat{P}=60^o\)  

Mà: \(\widehat{P}+\widehat{N}=180^o\)

\(\Rightarrow\widehat{N}=180^o-60^o=120^o\)

\(\widehat{M}+\widehat{Q}=180^o\)

\(\Rightarrow\widehat{Q}=180^o-60^o=120^o\)