K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2021

a, Vì AE=CF và AD=BC (hbh ABCD) nên AD-AE=BC-CF

Do đó DE=BF

Mà ABCD là hbh nên AD//BC hay DE//BF

Vậy BFDE là hbh

b, Gọi O là giao điểm của AC và BD thì O là trung điểm AC,BD (ABCD là hbh)

Ta có BFDE là hbh và O là trung điểm BD nên O là trung điểm EF

Vậy AC,BD,EF đồng quy tại O

11 tháng 10 2023

Xét ΔADF và ΔCBE có

AD=CB

\(\widehat{ADF}=\widehat{CBE}\)

DF=BE

Do đó: ΔADF=ΔCBE

=>AF=CE

Xét ΔABE và ΔCDF có

AB=CD

\(\widehat{ABE}=\widehat{CDF}\)

BE=DF

Do đó: ΔABE=ΔCDF

=>AE=CF

Xét tứ giác AECF có

AE=CF

AF=CE

Do đó: AECF là hình bình hành

17 tháng 10 2021

a: Xét ΔAEB và ΔCFD có 

AB=CD

\(\widehat{ABE}=\widehat{CDF}\)

BE=DF

Do đó: ΔAEB=ΔCFD

Suy ra: \(\widehat{AEB}=\widehat{CFD}\)

\(\Leftrightarrow\widehat{AEF}=\widehat{EFC}\)

mà hai góc này là hai góc ở vị trí đồng vị

nên AE//CF

17 tháng 10 2021

Giúp em câu b) với ạ !

4 tháng 9 2019

A B C D F E O G H M P N

a) Gọi O là giao điểm của BD và AC

Theo bài ra ta có: \(BE=DF< \frac{BD}{2}\)

=> DF<DO và BF< BO

=> E nằm giữa B và O ;

F nằm giữa D và O

O là giao điểm 2 đường chéo của hình bình hành ABCD => OB=OD

Theo bài ra : EB = FD

=> OB-EB= OD-FD

=> OF=OE

Xét tứ giác AECF có: O là trung điểm EF ( OE=OF) và O là trung điểm AC ( ABCD là hình bình hành)

=> AECF là hình bình hành

b) G/s: AN =NM=MB => AM=2/3 AB 

=> M là trọng tâm tam giác AGC

mà O là trung điểm AC

=> G; M; O thẳng hàng  (1) 

Gọi H là giao điểm của CM và AG 

=> H là trung điểm AG , 

Lấy P là trung điểm GM

=> HP là đường trung bình của tam giác GAM 

=> HP// = 1/2 AM

=> HP//= MB

=> HPBM là hình bình hành

=> PB//=HM

=> PB //ME 

Xét tam giác OPB có PB//ME ; M là trung điểm OP

=> ME là đường trung bình

=> E là trung điểm OB

Vậy E là trung điểm OB với O là giao điểm của hai đường chéo hình bình hành ABCD