K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) \(\overrightarrow {OA}  - \overrightarrow {OB}  = \overrightarrow {BA} \)

\(\overrightarrow {OD}  - \overrightarrow {OC}  = \overrightarrow {CD} \)

Do ABCD là hình bình hành nên \(\overrightarrow {BA}  = \overrightarrow {CD} \)

Suy ra, \(\overrightarrow {OA}  - \overrightarrow {OB}  = \overrightarrow {OD}  - \overrightarrow {OC} \)

b)  \(\overrightarrow {OA}  - \overrightarrow {OB}  + \overrightarrow {DC}  = (\overrightarrow {OD}  - \overrightarrow {OC})  + \overrightarrow {DC}  \\= \overrightarrow {CD}  + \overrightarrow {DC} = \overrightarrow {CC} = \overrightarrow 0 \)

12 tháng 5 2017

A B C D O M N E F
a) Giả sử \(\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{OB}+\overrightarrow{OD}\)
\(\Leftrightarrow\overrightarrow{OA}+\overrightarrow{OC}-\overrightarrow{OB}-\overrightarrow{OD}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{OA}+\overrightarrow{BO}+\overrightarrow{OC}+\overrightarrow{DO}=\overrightarrow{0}\)
\(\Leftrightarrow\left(\overrightarrow{BO}+\overrightarrow{OA}\right)+\left(\overrightarrow{DO}+\overrightarrow{OC}\right)=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{BA}+\overrightarrow{DC}=\overrightarrow{0}\) (đúng do tứ giác ABCD là hình bình hành).
b) \(\overrightarrow{ME}+\overrightarrow{FN}=\overrightarrow{MA}+\overrightarrow{AE}+\overrightarrow{FC}+\overrightarrow{CN}\)
\(=\left(\overrightarrow{MA}+\overrightarrow{CN}\right)+\left(\overrightarrow{AE}+\overrightarrow{FC}\right)\).
Do các tứ giác AMOE, MOFB, OFCN, EOND cũng là các hình bình hành.
Vì vậy \(\overrightarrow{CN}=\overrightarrow{FO}=\overrightarrow{BM};\overrightarrow{FC}=\overrightarrow{ON}=\overrightarrow{ED}\).
Do đó: \(\overrightarrow{ME}+\overrightarrow{FN}=\left(\overrightarrow{MA}+\overrightarrow{CN}\right)+\left(\overrightarrow{AE}+\overrightarrow{FC}\right)\)
\(=\left(\overrightarrow{MA}+\overrightarrow{BM}\right)+\left(\overrightarrow{AE}+\overrightarrow{ED}\right)\)
\(=\overrightarrow{BA}+\overrightarrow{AD}=\overrightarrow{BD}\) (Đpcm).

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a)  ABCD là hình bình hành nên \(\overrightarrow {DC}  = \overrightarrow {AB} \)

\( \Rightarrow \overrightarrow {BA}  + \overrightarrow {DC}  = \overrightarrow {BA}  + \overrightarrow {AB}  = \overrightarrow {BB}  = \overrightarrow 0 \)

b) \(\overrightarrow {MA}  + \overrightarrow {MC}  = \left( {\overrightarrow {MB}  + \overrightarrow {BA} } \right) + \left( {\overrightarrow {MD}  + \overrightarrow {DC} } \right)\)

\(= \left( {\overrightarrow {MB}  + \overrightarrow {MD} } \right) + \left( {\overrightarrow {BA}  + \overrightarrow {DC}} \right)\)

\(= \overrightarrow {MB}  + \overrightarrow {MD} \) (Vì \(\overrightarrow {BA}  + \overrightarrow {DC}  = \overrightarrow {0} \))

 

31 tháng 7 2019

A B D C O / / // // a) Chứng minh \(\overrightarrow{AC}-\overrightarrow{BA}=\overrightarrow{AD}\)

Ta có: \(\overrightarrow{AC}-\overrightarrow{CD}=\overrightarrow{AD}\left(đpcm\right)\) ( vì \(\overrightarrow{BA}=\overrightarrow{CD}\) )

b) Chứng minh \(\left|\overrightarrow{AB}+\overrightarrow{AD}\right|=AC\)

Ta có: \(\overrightarrow{AB}+\overrightarrow{AD}=\overrightarrow{AC}\) ( theo quy tắc hình bình hành )

\(\Rightarrow\left|\overrightarrow{AB}+\overrightarrow{AD}\right|=\left|\overrightarrow{AC}\right|=AC\left(đpcm\right)\)

bài này chả khó áp dụng 1 bước là ra ngay điều cần chứng minh rồi

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) \(\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD}  = 4\overrightarrow {MO} \)

\( \Leftrightarrow \overrightarrow {MO}  + \overrightarrow {OA}  + \overrightarrow {MO}  + \overrightarrow {OB}  + \overrightarrow {MO}  + \overrightarrow {OC}  + \overrightarrow {MO}  + \overrightarrow {OD}  = 4\overrightarrow {MO} \)

\( \Leftrightarrow 4\overrightarrow {MO}  + \left( {\overrightarrow {OA}  + \overrightarrow {OB} } \right) + \left( {\overrightarrow {OC}  + \overrightarrow {OD} } \right) = 4\overrightarrow {MO} \)

\( \Leftrightarrow 4\overrightarrow {MO}  + \overrightarrow 0  + \overrightarrow 0  = 4\overrightarrow {MO} \\ \Leftrightarrow 4\overrightarrow {MO}  = 4\overrightarrow {MO} \) (luôn đúng)

(vì O là giao điểm 2 đường chéo nên là trung điểm của AB, CD)

b) ABCD là hình bình hành nên ta có \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \)

Suy ra \(\)\(\overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow {AD} = \left( {\overrightarrow {AB}  + \overrightarrow {AD} } \right) + \overrightarrow {AC}  = \overrightarrow {AC}  + \overrightarrow {AC}  = 2\overrightarrow {AC} \) (đpcm)

12 tháng 5 2017

A B C D O
\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\left(\overrightarrow{OA}+\overrightarrow{OC}\right)+\left(\overrightarrow{OB}+\overrightarrow{OC}\right)\)
\(=\overrightarrow{0}+\overrightarrow{0}\)(Theo tính chất hình bình hành).
\(=\overrightarrow{0}\) .

a: \(\overrightarrow{BD}-\overrightarrow{BA}=\overrightarrow{AD}\)

b: \(\overrightarrow{BC}-\overrightarrow{BD}+\overrightarrow{BA}=\overrightarrow{BD}-\overrightarrow{BD}=\overrightarrow{0}\)

 

26 tháng 9 2021

sao ki vay???

 

6 tháng 1 2017

Gọi MP giao (O) tại điểm thứ hai S

Ta có các biến đổi góc sau:

K M L ^ = C M S ^ = S C P ^  (góc tạo bởi tiếp tuyến và dây cung)

= M S C ^ − S P C ^  (góc ngoài)

= M N C ^ − M N Q ^  (do các tứ giác MNPQ và MNSC nội tiếp).

= K N L ^

Từ đó tứ giác MKLN nội tiếp, suy ra  K L M ^ = K N M ^ = Q P M ^   ⇒ K L ∥ P Q ⊥ O C

Vậy  K L ⊥ O C .