K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2018

1) Làm được câu a chưa 

a) Xét tam giác HPB và KPC có:

\(\widehat{ABP}=\widehat{ACP}\)

\(\widehat{H}=\widehat{K}=90^o\)

\(\Rightarrow\) Tam giác HPB đồng dạng với tam giác KCP

\(\Rightarrow BP.KP=CP.HP\)

b) Tam giác HBC vuông có D là trung điểm cạnh huyền BC

\(\Rightarrow HD=\frac{BC}{2}\)

Tương tự ta cũng có \(KD=\frac{BC}{2}\)

\(\Rightarrow DK=DH\left(đpcm\right)\)

2) Gọi O là tâm hình bình hành. Qua M kẻ đường thẳng song song BD cắt AC; AD theo thứ tự tại N; P => N là trung điểm MP. Qua K kẻ đường thẳng song song BD cắt AB tại Q. Không mất tính tổng quát giả thiết Q nằm giữa A và G, G nằm giữa Q và N .Ta có:
GQ/GN = KQ/MN 
<=> GQ/GN = KQ/NP ( vì MN = NP) 
<=> GQ/GN = AQ/AN ( vì KQ/NP = GN/AN) 
<=> GQ/AQ = GN/AN 
<=> (AG - AQ)/AQ = (AN - AG)/AN ( vì GQ = AG - AQ; GN = AN - AG) 
<=> 1/AN + 1/AQ = 2/AG 
<=> OA/AN + OA/AQ = 2.OA/AG 
<=> AB/AM + AD/AK = AC/AG (đpcm) ( vì OA/AN = AB/AM; OA/AQ = AD/AK; AC = 2OA)

12 tháng 3 2018

câu 1b bạn  làm sai r, H,P,C có thẳng hàng đâu

còn câu 2 dòng thứ 6 sao ra dòng thứ 7 vậy bạn, AQ=GN hé.sao  ra???

5 tháng 1 2020

A B C D H K I E F d M

Qua B và D kẻ hai đường thẳng song song với đường thẳng D và cắt  AC tại H và K.

Gọi giao điểm 2 đường chéo của hình bình hành ABCD.

Áp dụng định lí Ta-lét, ta có các tỉ số :

\(\frac{AB}{AE}=\frac{AH}{AM}\)\(\frac{AD}{AF}=\frac{AK}{AM}\)

\(\Rightarrow\frac{AB}{AE}+\frac{AD}{AF}=\frac{AH}{AM}+\frac{AK}{AM}=\frac{AH+AK}{AM}=\frac{2AK+IH+IK}{AM}\)(1)

Ta có : \(\Delta BHI=\Delta DKI\left(gcg\right)\)

\(\Rightarrow IH=IK\)

Thay vào (1) ta được :

\(\Rightarrow\frac{AB}{AE}+\frac{AD}{AF}=\frac{2AK+2IK}{AM}=\frac{2\left(AK+IK\right)}{AM}=\frac{2AI}{AM}\)

Mà \(AI=\frac{1}{2}AC\Rightarrow2AC=AI\)

\(\Rightarrow\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AM}\)(Đpcm)