K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2017

a) Chứng minh các cặp tam giác bằng nhau:

DABH = DCDK và DBCH = DDAK

Từ đó, suy ra AABH + SBCH = SCDH + SDAK

Þ ĐPCM.

b) Trừ cả 2 vế của ý a) cho SAKCH, ta thu được SABCK = SADCH

27 tháng 9 2018

Xem ở đây nha: 

Cho hình bình hành ABCD, Gọi H và K lần lượt là hình chiếu của A và C lên đường chéo BD. a) Chứng minh AHCK là hình bình hành. b) Gọi O là trung điểm của HK. Chứng minh ba điểm A, O, C thẳng hàng - Toán học Lớp 8 - Bài tập Toán học Lớp 8 - Giải bài tập Toán học Lớp 8 | Lazi.vn - Cộng đồng Tri thức & Giáo dục

27 tháng 9 2018

A B C D K H 1 1

Xét tam giác vuông ADH & tam giác vuông CKB:

AD = BC ( ABCD là hbh)

góc D1= góc B1 ( so le trong)

=> tam giác vuông = tam giác vuông CKB ( cạnh hyền - góc nhọn)

=> AH = CK ( 2 cạnh t/ứng)

Xét tứ giác AHCK :

AH = CK (cmt)

AH // CK ( cùng vuông góc vs BD)

=> AHCK là hình bình hành ( đn)

2 tháng 1 2019

a) Hai tam giác vuông AHD và BDC có ∠ADH = ∠CBD (SLT)

⇒ ΔAHD ∼ ΔDCB (g.g)

b) Ta có S, R là trung điểm của HB và AH nên SR là đường trung bình của ΔABH ⇒ SR // AB

⇒ ∠HSR = ∠HBA (đồng vị)

Mà ∠HBA = ∠D1

⇒ HSR = ∠D1

Do đó ΔSHR ∼ ΔDCB (g.g)

c) Ta có SR // AB và SR = AB/2 (cmt), TD = CD/2

mà AB = CD và AB // CD (gt)

⇒ SR // DT và SR = DT

Do đó Tứ giác DRST là hình bình hành

d) Ta có SR // AB mà AB ⊥ AD (gt) ⇒ SR ⊥ AD, lại có AH ⊥ SD (gt)

⇒ R là trực tâm của ΔSAD ⇒ DR là đường cao thứ ba nên DR ⊥ SA

Mà DR // ST (DRST là hình bình hành) ⇒ ST ⊥ SA

Vậy ∠AST = 90o

26 tháng 8 2021

Xét tg DKC và tg BHA có H=K =90 đỘ

                                         DC=AB( hbh ABCD)

                                         ABH=CBK( hbh ABCD, AB//DC)

Suy ra tg DKC=tg BHA( ch-gn)

=> CK=AH( 2 cạnh t/ư)

Ta có : AH vg góc DB

           CK vg góc DB

=> CK//AH

Xét tg AKCH có CK//AH(cmt)

                          CK=AH( cmt)

=> AKCH là hbh( dấu hiệu 3)

 

 

9 tháng 12 2018

Ta chứng minh AH//CK, AH = CK (DAHD = DCKB) Þ AHCK là hình bình hành (cặp cạnh đối song song và bằng nhau)

2 tháng 10 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có:

△ ABC =  △ ADC (c.c.c) ⇒ S A B C = S A D C  (1)

△ AHC =  △ AKC (c.c.c) ⇒  S A H C = S A K C  (2)

Từ (l) và (2) ⇒  S A B C + S A H C  =  S A D C + S A K C

Hay  S A B C H = S A D C K

a: Xét ΔAHD vuông tại H và ΔCKB vuông tại K có

AD=CB

góc ADH=góc CBK

=>ΔAHD=ΔCKB

=>AH=CK

mà AH//CK

nên AHCK là hình bình hành

b: AHCK là hbh

=>AC cắt HK tại trung điểm của mỗi đường

=>A,O,C thẳng hàng