K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2019

@Akai Haruma

NV
13 tháng 11 2019

\(\overrightarrow{u}=\overrightarrow{DA}+\overrightarrow{AM}+2\left(\overrightarrow{AD}+\overrightarrow{DN}\right)+\overrightarrow{BC}\)

\(=\frac{2}{3}\overrightarrow{AB}+\overrightarrow{AD}+2.\frac{1}{4}\overrightarrow{DC}+\overrightarrow{AD}\) (do \(\overrightarrow{BC}=\overrightarrow{AD}\))

\(=\frac{7}{6}\overrightarrow{AB}+2\overrightarrow{AD}\)

\(\Rightarrow\left|\overrightarrow{u}\right|=\sqrt{\frac{49}{36}AB^2+4AD^2}=\frac{3\sqrt{113}}{2}\)

NV
14 tháng 11 2019

Mình bấm nhầm số đó, \(\sqrt{193}\) đúng rồi

9 tháng 8 2019

Nối AC, trên cạnh AC lấy điểm I sao cho \(\overrightarrow{AI}=\frac{2}{3}\overrightarrow{AC}\)

Xét tam giác ABC có: \(\frac{AM}{AB}=\frac{AI}{AC}=\frac{2}{3}\) \(\Rightarrow\overrightarrow{MI}=\frac{2}{3}\overrightarrow{BC}\)

Tương tự trong tam giác ACD có: \(\overrightarrow{IN}=\frac{2}{3}\overrightarrow{AD}\)

Ta có: \(\overrightarrow{MN}=\overrightarrow{MI}+\overrightarrow{IN}=\frac{2}{3}\left(\overrightarrow{BC}+\overrightarrow{AD}\right)\)

NV
21 tháng 2 2021

\(BM=2MA\Rightarrow\overrightarrow{AM}=\dfrac{1}{3}\overrightarrow{AB}\)\(AN=3NC\Rightarrow\overrightarrow{AN}=\dfrac{3}{4}\overrightarrow{AC}=\dfrac{3}{4}\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{AD}\)

Do đó:

\(\overrightarrow{MN}.\overrightarrow{DN}=\left(\overrightarrow{MA}+\overrightarrow{AN}\right)\left(\overrightarrow{DA}+\overrightarrow{AN}\right)\)

\(=\left(-\dfrac{1}{3}\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{AD}\right)\left(-\overrightarrow{AD}+\dfrac{3}{4}\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{AD}\right)\)

\(=\left(\dfrac{5}{12}\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{AD}\right)\left(\dfrac{3}{4}\overrightarrow{AB}-\dfrac{1}{4}\overrightarrow{AD}\right)\)

\(=\dfrac{5}{16}AB^2-\dfrac{3}{16}AD^2=\dfrac{1}{8}AB^2=\dfrac{1}{8}\) (chú ý rằng \(\overrightarrow{AB}.\overrightarrow{AD}=0\) và \(AB=AD=1\))