Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì O là tâm của hình bình hành ABCD
nên O là trung điểm chung của AC và BD
=>\(\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{0};\overrightarrow{OB}+\overrightarrow{OD}=\overrightarrow{0}\)
\(\dfrac{1}{4}\left(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}\right)\)
\(=\dfrac{1}{4}\left(\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{MO}+\overrightarrow{OC}+\overrightarrow{MO}+\overrightarrow{OD}\right)\)
\(=\dfrac{1}{4}\left(4\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{OC}+\overrightarrow{OB}+\overrightarrow{OD}\right)\)
\(=\dfrac{1}{4}\cdot4\overrightarrow{MO}=\overrightarrow{MO}\)
a: \(\overrightarrow{AD}+\overrightarrow{DC}=\overrightarrow{AC}\)
b: \(\overrightarrow{NA}+\overrightarrow{ND}=\overrightarrow{0}\)
Xét ΔMDC có N là trung điểm của DC
nên \(2\cdot\overrightarrow{MN}=\overrightarrow{MD}+\overrightarrow{MC}=\overrightarrow{MA}+\overrightarrow{AD}+\overrightarrow{MB}+\overrightarrow{BC}=\overrightarrow{AD}+\overrightarrow{BC}\)
a, Ta có:AM+AN=OM-OA+ON-OA=OM+ON+AC=OC+AC=3/2OC
GA+3GB+GC+OD=2GB+OD=OB+OD=0
C,