Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để chứng minh F là trọng tâm của tam giác AMN, ta cần chứng minh ba đường phân giác AM, AN và FM đồng quy tại một điểm. Thực hiện theo các bước sau:
Bước 1: Chứng minh AM cắt FN tại điểm P.
Vì CM là đường phân giác của tam giác ABC nên từ hai tỉ lệ bằng nhau CD/DB = CE/EA ta có: AD
/ DB = AE/EC
Do đó, tam giác ADE và CDB đồng dạng theo tỷ lệ AD/DB = AE/EC.
Từ đó suy ra:
AM/MB = (AD + DM)/DB = (AE + EM)/(EC + CB) = AE/EC = AC/CE = AC/(AC/6) = 6 Tương tự,
ta có:
AN/NC = AD/DB = 2
FM/MB = FB + BM/MB = FB/(BC/3) + FM/(FM-MB) = 3
Vậy tam giác AMN đồng dạng với tam giác ABC theo tỷ lệ 6:2:3.
Bước 2: Chứng minh FM cắt AN tại một điểm Q.
Vì FM = 2FB nên từ tam giác FBM ta có FB = FM/2 = FM/2FB, do đó tam giác FNB đồng dạng với tam giác ABC theo tỷ lệ 1:2.
Vậy AM, FN và EQ đồng qui tại một điểm P.
Bước 3: Chứng minh đường phân giác FM cắt AN tại điểm P.
CM = FM và CN = FN, từ đó tam giác CMN và FMN đồng dạng theo tỉ lệ 1: 1.
xin lỗi bạn tự vẽ hình nha
theo đề bài ta có
(tất cả đều có dấu vec tơ trên đầu nha bạn)
DF=\(\dfrac{1}{3}\)DC+\(\dfrac{2}{3}\)DA
DE=\(\dfrac{1}{2}\)DA+\(\dfrac{1}{2}\)DB==\(\dfrac{1}{2}\)DA+\(\dfrac{1}{2}\)(DC+CB)
=\(\dfrac{1}{2}\)DA+\(\dfrac{1}{2}\)DA(vì DA=CB)+\(\dfrac{1}{2}\)DC=DA+\(\dfrac{1}{2}\)DC
ta phân tích 2 vec tơ ra xong chúng ta lấy hệ số chia cho nhau ví dụ như bài trên
\(\dfrac{\dfrac{2}{3}}{1}\)=\(\dfrac{\dfrac{1}{3}}{\dfrac{1}{2}}\)=\(\dfrac{2}{3}\)nên 2 vec tơ cùng phương nên 3 điểm đó thẳng hàng hay
DF=\(\dfrac{2}{3}\)DE(lấy hệ số của 2 vec tơ chia cho nhau hoặc phân tích ra vecto DF=kDE)
để lại 1like cho câu trả lời và xin in4 làm quen nếu lớp 10 nha
\(\dfrac{1}{2}\)
a.
\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-1;8\right)\\\overrightarrow{AC}=\left(3;6\right)\end{matrix}\right.\) mà \(\dfrac{-1}{3}\ne\dfrac{8}{6}\Rightarrow\overrightarrow{AB}\) và \(\overrightarrow{AC}\) không cùng phương hay A,B,C không thẳng hàng
\(\Rightarrow A,B,C\) là 3 đỉnh của 1 tam giác
b.
Theo công thức trung điểm: \(\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_C}{2}=\dfrac{1+4}{2}=\dfrac{5}{2}\\y_I=\dfrac{y_A+y_C}{2}=\dfrac{-3+3}{2}=0\end{matrix}\right.\)
\(\Rightarrow C\left(\dfrac{5}{2};0\right)\)
Gọi G là trọng tâm tam giác, theo công thức trọng tâm:
\(\left\{{}\begin{matrix}x_G=\dfrac{x_A+x_B+x_C}{3}=\dfrac{1+0+4}{3}=\dfrac{5}{3}\\y_G=\dfrac{y_A+y_B+y_C}{3}=\dfrac{-3+5+3}{3}=\dfrac{5}{3}\\\end{matrix}\right.\) \(\Rightarrow G\left(\dfrac{5}{3};\dfrac{5}{3}\right)\)
c.
Gọi \(D\left(x;y\right)\Rightarrow\overrightarrow{DC}=\left(4-x;3-y\right)\)
ABCD là hình bình hành khi \(\overrightarrow{AB}=\overrightarrow{DC}\)
\(\Rightarrow\left\{{}\begin{matrix}4-x=-1\\3-y=8\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=5\\y=-5\end{matrix}\right.\)
\(\Rightarrow D\left(5;-5\right)\)
a, Ta có:AM+AN=OM-OA+ON-OA=OM+ON+AC=OC+AC=3/2OC
GA+3GB+GC+OD=2GB+OD=OB+OD=0
C,
Câu 1: giả sử:\(\overrightarrow{BD}-\overrightarrow{BA}=\overrightarrow{OC}-\overrightarrow{OB}\Leftrightarrow\overrightarrow{BA}+\overrightarrow{AD}-\overrightarrow{BA}=\overrightarrow{OC}+\overrightarrow{BO}\)
\(\Leftrightarrow\overrightarrow{AD}=\overrightarrow{BC}\)(luôn đúng vì ABCD lad hình bình hành)
giả sử: \(\overrightarrow{BC}-\overrightarrow{BD}+\overrightarrow{BA}=\overrightarrow{0}\Leftrightarrow\overrightarrow{BC}-\overrightarrow{BC}+\overrightarrow{DC}+\overrightarrow{BA}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{BB}+\overrightarrow{DD}=\overrightarrow{0}\)(LUÔN ĐÚNG)
câu 2 :GIẢ SỬ:
\(\overrightarrow{AB}+\overrightarrow{OA}=\overrightarrow{OB}\Leftrightarrow\overrightarrow{AO}+\overrightarrow{OB}+\overrightarrow{OA}+\overrightarrow{BO}=\overrightarrow{0}\)(luôn đúng)
giả sử: \(\overrightarrow{MA}+\overrightarrow{MC}=\overrightarrow{MB}+\overrightarrow{MD}\\ \Leftrightarrow\overrightarrow{MB}+\overrightarrow{BA}+\overrightarrow{MD}+\overrightarrow{DC}=\overrightarrow{MB}+\overrightarrow{MD}\Leftrightarrow\overrightarrow{0}=\overrightarrow{0}\)
AM+BM+DM=0
<=> AM+(BC+CM)+(DA+AM)=0
<=>2AM+(BC+DA)+CM=0
<=>2(1/3AC)-MC=0
<=>2/3AC - 2/3 AC=0
<=>0=0 (ĐPCM)