Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\) Vì ABCD là hbh nên \(AD=BC;AB//CD\Rightarrow\widehat{ADB}=\widehat{CBD}\left(so.le.trong\right)\)
Ta có \(\left\{{}\begin{matrix}\widehat{AED}=\widehat{CFB}\left(=90^0\right)\\\widehat{ADB}=\widehat{CBD}\left(cm.trên\right)\\AD=BC\left(cm.trên\right)\end{matrix}\right.\) nên \(\Delta AED=\Delta CFB\left(ch-gn\right)\)
\(\Rightarrow DE=BF\left(1\right)\)
Mà O là giao 2 đường chéo hbh ABCD nên O là trung điểm AC,BD
\(\Rightarrow OB=OD\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow OB-BF=OD-DE\Rightarrow OE=OF\)
\(b,\) Xét tg AECF có O là trung điểm AC,EF nên là hbh
Bài 2:
a: Xét ΔADN vuông tại N và ΔCBM vuông tại M có
AD=CB
góc ADN=góc CBM
DO đó: ΔADN=ΔCBM
=>DN=BM và AN=CM
b: Xet tứ giác AMCN có
AN//CM
AN=CM
Do đó: AMCN là hình bình hành
c: Gọi O là giao của AC và BD
=>O là trung điểm của AC
Xet ΔAKC có AN/AK=AO/AC
nên NO//KC
=>KC//BD
Xét ΔBAK có
BN vừa là đường cao, vừa là trung tuyến
nên ΔBAK cân tại B
=>BA=BK=DC
Xét tứ giác BDKC có
KC//BD
DC=BK
Do đo; BDKC là hình thang cân
Bài 2:
a: Xét ΔADN vuông tại N và ΔCBM vuông tại M có
AD=CB
góc ADN=góc CBM
DO đó: ΔADN=ΔCBM
=>DN=BM và AN=CM
b: Xet tứ giác AMCN có
AN//CM
AN=CM
Do đó: AMCN là hình bình hành
c: Gọi O là giao của AC và BD
=>O là trung điểm của AC
Xet ΔAKC có AN/AK=AO/AC
nên NO//KC
=>KC//BD
Xét ΔBAK có
BN vừa là đường cao, vừa là trung tuyến
nên ΔBAK cân tại B
=>BA=BK=DC
Xét tứ giác BDKC có
KC//BD
DC=BK
Do đo; BDKC là hình thang cân
a: Xét tứ giác ABEC có
AB//EC
AC//BE
Do đó: ABEC là hình bình hành
mà AB=AC
nên ABEC là hình thoi
hình tự vẽ
Gọi giao điểm của AC và BD là O => O là trung điểm của AC, BD => AO=OC;BO=OD
từ điểm O hạ OO' vuông góc với xy tại O' => OO'//DD' (2 góc đồng vị bằng nhau \(\widehat{OO'y}=\widehat{DD'y}=90^o\))
AO=OC;OO'//DD' => OC là đường trung bình của tứ giác BB'DD' => \(OC=\frac{1}{2}\left(BB'+DD'\right)\)(1)
Mặt khác: BO=OD; OO'//AA' (2 góc đồng vị bằng nhau \(\widehat{OO'y}=\widehat{AA'y}=90^o\))
=>OC là đường trung bình của tam giác AA'C => \(OC=\frac{1}{2}AA'\)(2)
Từ (1) và (2) => \(\frac{1}{2}AA'=\frac{1}{2}\left(BB'+DD'\right)\Leftrightarrow AA'=BB'+DD'\)(đpcm)
ý lộn, đường trung bình của hình thang BB'DD' nhé chứ ai lại nói tứ giác bao giờ