K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2019

A A A B B B C C C D D D H H H F F F G G G E E E a/Vì ABCD là hình bình hành nên ta có ^BAD+^ADC=1800(trong cùng phía)

Mà ^HDA=1/2^ADC;^HAD=1/2^BAD.Suy ra ^HDA+^HAD=900

Vậy ^AHD=900

b/Chứng minh tương tự câu a ta có ^AEC=900;^AGB=900

Vậy HEFG là hình chữ nhật

24 tháng 10 2016

Bạn tự vẽ hình nhá!!!!

a) ABCD là hình bình hành=>góc ADC=góc ABC => góc MBN=góc MDN

Mà: góc MBN= góc BNC( so le trong) => góc BNC=góc MDN => DM//BN

b) Từ phần a ta có:

Xét DMNB có  DM//BN

                      BM//DN (do AB//CD)

=> DMNB là hbh

c) Ta có:

góc AMD= góc MDC(so le trong) => góc ADM= góc AMD=> Tam giác AMD cân tại A

Mà: AH là đường phân giác=> AH là đường cao<=> AH vuông góc với DM (1)

=>AG vuông góc với BN ( do DM//BN)     (2)

Tương tự, ta cũng chứng minh được tam giác BNC cân tại C

Mà: CF là đường PG=> CF vuông góc với BN (3)

Từ (1); (2); (3) => HEFG là hcn do có 3 góc vuông

a: góc FDC=góc ADC/2=45 độ

góc FCD=góc BCD/2=45 độ

=>góc FDC=góc FCD

Xét ΔFDC có góc FDC+góc FCD=90 độ

nên ΔFDC vuông tại F

=>góc DFC=90 độ

b: góc EAB=1/2*góc BAD=45 độ

góc EBA=1/2*góc ABC=45 độ

Xét ΔAEB và ΔCFD có

góc EAB=góc FCD

AB=CD

góc EBA=góc FDC

=>ΔAEB=ΔCFD

c: ΔAEB=ΔCFD

=>góc AEB=góc CFD=90 độ

góc GAD+góc GDA=1/2(góc BAD+góc ADC)=1/2*180=90 độ

=>góc AGD=90 độ

=>góc EGF=90 độ

ΔAEB=ΔCFD

=>AE=CF

=>AE=DF

AE=AG+GE

DF=DG+GF

mà AE=DF và AG=GD

nên GE=GF

Xét tứ giác GEHF có

góc F=góc GEH=góc FGE=90 độ

GE=GF

=>GEHF là hình vuông

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) Vì \(DE\), \(BF\) là phân giác (gt)

Suy ra \(\widehat {{\rm{ADE}}} = \widehat {{\rm{EDC}}} = \frac{{\widehat {ADC}}}{2}\); \(\widehat {{\rm{EBF}}} = \widehat {{\rm{CBF}}} = \frac{{\widehat {ABC}}}{2}\) (1)

Vì \(ABCD\) là hình bình hành (gt)

Suy ra \(AB\) // \(CD\) và \(\widehat {ADC} = \widehat {ABC}\) (2)

Suy ra \(\widehat {{\rm{AED}}} = \widehat {{\rm{EDC}}}\) (so le trong) (3)

Từ (1), (2), (3) suy ra \(\widehat {AED} = \widehat {ABF}\)

Mà hai góc ở vị trí đồng vị

Suy ra \(DE\) // \(BF\)

b) Xét tứ giác \(DEBF\) ta có:

\(DE\) // \(BF\) (cmt)

\(BE\) // \(DF\) (do \(AB\) // \(CD\))

Suy ra \(DEBF\) là hình bình hành

3 tháng 9 2020

a/

\(\widehat{DAE}=\frac{\widehat{A}}{2};\widehat{ADE}=\frac{\widehat{D}}{2}\Rightarrow\widehat{DAE}+\widehat{ADE}=\frac{\widehat{A}+\widehat{D}}{2}\)

Mà \(\widehat{A}+\widehat{D}=180^o\) (Vì AB//CD nên ^A và ^D là 2 góc trong cùng phía nên bù nhau)

\(\Rightarrow\widehat{DAE}+\widehat{ADE}=\frac{\widehat{A}+\widehat{D}}{2}=\frac{180^o}{2}=90^o\) 

Xét tg ADE có ^DAE+^ADE=90 => ^AED=180-(^DAE+^ADE)=180-90=90

Chứng minh tương tự cũng có ^BFC=90

b/

Xét tg ADP có DE là phân giác cua ^D

^AED=90 => DE vuông góc với AP

=> DE vùa là phân giác vừa là đường cao => tg ADP cân tại D => AD=DP

Chứng minh tương tự cũng có tg BPC cân tại C => BC=CP

=> AD+BC=DP+CP=DC

c/

Xét tg cân ADP có DE là đường cao => DE là đường trung trực thuộc cạnh AP => AE=PE

Chứng minh tương tự với tg cân BPC => BF=PF

=> EF là đường trung bình của tg ABP (đường thẳng đi qua trung điểm 2 cạnh của 1 tg là đường trung bình)

=> EF//AB//CD

Xét tg ADP có EF//CD và AF=PF => EF là đường trung bình của tg ADP => EF đi qua trung điểm của AD

Chứng minh tương tự cuãng có EF đi qua trung ddiemr của BC

=> EF là đường trung bình của hình thang ABCD