Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vào thống kê hỏi đáp là thấy hình :)
a,
\(\frac{MF}{MB}=\frac{AF}{BC}=\frac{AD-DF}{BC}\)
\(=1-\frac{ED}{EC}=\frac{EC-ED}{EC}=\frac{DC}{EC}=\frac{AB}{EC}=\frac{MB}{ME}\)
\(\Rightarrow MB^2=MF.ME\)
b,
\(\frac{1}{BE}+\frac{1}{BF}=\frac{1}{BM}\Leftarrow BM\left(BE+BF\right)=BE.BF\Leftarrow BM.BF=BE.\left(BF-BM\right)=BE.BF\Leftarrow\frac{BE}{BM}\)
\(=\frac{BF}{MF}\Leftarrow\frac{ME}{MB}=\frac{MB}{MF}\)
Nguồn : gg
5. Vì tứ giác ABCD là hình bình hành (gt)
=> AD // BC ; AD = BC (tc)
Vì M là trung điểm AD (gt)
N là trung điểm BC (gt)
AD = BC (cmt)
=> AM = DM = BN = CN
Vì AD // BC mà M ∈ AD, N ∈ BC
=> MD // BN
Xét tứ giác MBND có : MD = BN (cmt)
MD // BN (cmt)
=> Tứ giác MBND là hình bình hành (DHNB)
=> BM = DN (tc hình bình hành)
6. Vì tứ giác ABCD là hình bình hành (gt)
=> AB // CD ; AB = CD (tc)
Vì E là trung điểm AB (gt)
F là trung điểm CD (gt)
AB = CD (cmt)
=> AE = BE = DF = DF
Vì AB // CD mà E ∈ AB, F ∈ CD
=> BE // DF
Xét tứ giác DEBF có : BE = DF (cmt)
BE // DF (cmt)
=> Tứ giác DEBF là hình bình hành (DHNB)
1:
a: Xét tứ giác BMDN có
DM//BN
DM=BN
Do đó: BMDN là hình bình hành
Suy ra: BM//DN
vì ABCD là hbh
=> AB//DC => AB//EC
AD//BC => AF//BC
vì AB//EC . Theo đl Ta-lét ta có
\(\dfrac{BM}{ME}=\dfrac{AM}{MC}\) (1)
vì AF // BC theo đl ra-lét ta có
\(\dfrac{MF}{MB}=\dfrac{AM}{MC}\) (2)
từ (1) và (2)
=>\(\dfrac{BM}{ME}=\dfrac{MF}{MB}\)
=> BM2=ME.MF (đpcm)
Ta có: \(\frac{1}{BE}+\frac{1}{BF}=\frac{1}{BM}\)
\(\Leftrightarrow BF.BM+BE.BM=BE.BF\)
\(\Leftrightarrow BE.BM=BE.BF-BF.BM\)
\(\Leftrightarrow BE.BM=BF.ME\)
\(\Leftrightarrow\frac{BE}{BF}=\frac{ME}{MB}\)
\(\Leftrightarrow\frac{BF+FE}{BE}=\frac{EC}{AB}\)
\(\Leftrightarrow\frac{BF+FE}{BE}=\frac{DC+ED}{AB}\)
\(\Leftrightarrow1+\frac{FE}{BE}=1+\frac{ED}{AB}\)
\(\Leftrightarrow\frac{FE}{BE}=\frac{ED}{AB}\)
(Đúng, theo hệ quả của định lý Talet)
Vậy nên \(\frac{1}{BE}+\frac{1}{BF}=\frac{1}{BM}\) (ĐPCM)