Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O là giao điểm AC và BD \(\Rightarrow\) O là trung điểm AC
\(\Rightarrow\) G là trọng tâm tam giác ABC
\(\Rightarrow BG=\dfrac{2}{3}BO=\dfrac{2}{3}.\dfrac{1}{2}BD=\dfrac{1}{3}BD\)
\(\Rightarrow\dfrac{BG}{BD}=\dfrac{1}{3}\)
Lại có: \(SM=2MB\Rightarrow2MB=SB-MB\Rightarrow MB=\dfrac{1}{3}SB\Rightarrow\dfrac{MB}{SB}=\dfrac{1}{3}\)
\(\Rightarrow\dfrac{BG}{BD}=\dfrac{BM}{SB}=\dfrac{1}{3}\Rightarrow MG||SD\) (Talet đảo)
Mà \(SD\in\left(SAD\right)\Rightarrow MG||\left(SAD\right)\)
a) △SAB có: M, N là trung điểm của SA, SB nên MN // AB
Mà AB // CD
Suy ra MN // CD mà CD thuộc (SCD)
Do đó: MN // (SCD)
b) Ta có: MN = \(\dfrac{1}{2}\) AB
Mà CD = \(\dfrac{1}{2}\) AB
Suy ra: MN = CD mà MN // CD
Nên MNCD là hình bình hành. Do đó MD // CN
Mà CN thuộc (SBC)
Suy ra: DM // (SBC).
c) Gọi G là giao điểm của DM và AI; H là trung điểm của AB; O là giao điểm của AC và DH
Ta có: AHCD là hình bình hành vì AH // CD, AH = CD
Do đó: O là trung điểm của AC và DH
Ta chứng minh được G là trung điểm của DM
△DMH có: G, O là trung điểm của DM, DH
Suy ra: GO // MH
Mà MH // SB (M, H là trung điểm của SA, AB)
Do đó: GO // SB mà GO thuộc (AIC) nên SB // (AIC).
Chọn D
Vì nếu M là tâm đường tròn ngoại tiếp tam giác suy ra MA = MC nên tam giác MAC cân tại M suy ra MO vuông góc AC suy ra ABCD là hình thoi (vô lý)
a) △ABC có M và N là trung điểm của AB, BC nên MN // AC (1)
△ACD có P và Q là trung điểm của CD, DA nên PQ // AC (2)
△SMN có I và J là trung điểm của SM, SN nên IJ // MN (3)
△SPQ có L và K là trung điểm của SQ, SP nên LK // PQ (4)
Từ (1)(2)(3)(4) suy ra IJ // LK. Do đó: I, J, K, L đồng phẳng.
Ta có: \(\dfrac{MN}{AC}=\dfrac{QP}{AC}=\dfrac{1}{2}\)
\(\dfrac{IJ}{MN}=\dfrac{LK}{PQ}=\dfrac{1}{2}\)
Từ (6)(7) suy ra: IJ = LK mà IJ // LK
Do đó: IJKL là hình bình hành.
b) Ta có: M, P lần lượt là trung điểm của AB, CD
Suy ra: MP // BC (1)
△SMP có: I, K là trung điểm của SM, SP
Suy ra: IK // MP (2)
Từ (1)(2) suy ra: IK // BC.
c) Ta có: J là điểm chung của hai mặt phẳng (IJKL) và (SBC)
Mà: IK // BC
Từ J kẻ Jx sao cho Jx // BC. Do đó, Jx là giao tuyến của hai mặt phẳng (IJKL) và (SBC).
Từ giả thiết suy ra \(\overrightarrow{PC}=-2\overrightarrow{PM}\) , \(\overrightarrow{QA}=-2\overrightarrow{QN}\) , \(\overrightarrow{BA}=2\overrightarrow{BM}\) và \(\overrightarrow{DC}=2\overrightarrow{DN}\)
Đặt \(\overrightarrow{BA}=\overrightarrow{a}\) , \(\overrightarrow{BC}=\overrightarrow{c}\) ta có \(\overrightarrow{BD}=\overrightarrow{a}+\overrightarrow{c}\) và
\(\overrightarrow{BP}=\frac{\overrightarrow{BC}-\left(-2\overrightarrow{BM}\right)}{1-\left(-2\right)}\Rightarrow3\overrightarrow{BP}=\overrightarrow{BC+}2\overrightarrow{BM}=\overrightarrow{c}+\overrightarrow{a}\)
Do đó : \(\overrightarrow{BD}=3\overrightarrow{BM}\) (1)
Hoàn toàn tương tự ta cũng được \(\overrightarrow{DB}=3\overrightarrow{DN}\) (2)
Từ (1) và (2) suy ra điều cần chứng minh