Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì ABCD là hình bình hành ( gt )
Và K thuộc BC nên
AD // BK Theo hệ quả của định lý Ta-let ta có :
\(\frac{EK}{AE}=\frac{EB}{ED}=\frac{AE}{EG}\Rightarrow\frac{EK}{AE}=\frac{AF}{EG}\Rightarrow AE^2=EK.EG\)
b) Ta có :
\(\frac{AE}{EK}-\frac{DE}{DB};\frac{AE}{AG}=\frac{BE}{BD}\)nên
\(\frac{AE}{AK}+\frac{AE}{AG}-\frac{BE}{BD}+\frac{DE}{DB}-\frac{BD}{BD}-1\Rightarrow\frac{1}{AE}=\frac{1}{AK}+\frac{1}{AG}\)
c) bạn tự làm tiếp mỏi tay quá
Giải nốt bài của Pác Hiếu:3
Đặt \(AB=a',AD=b\)
Áp dụng Đ/L Thales vào tam giác ABK,ta có:
\(\frac{BK}{KC}=\frac{AB}{CG}\Rightarrow\frac{a'}{CG}=\frac{BK}{KC}\left(1\right)\)
Áp dụng Đ/L Thales vào tam giác ADG,ta có:
\(\frac{CG}{DG}=\frac{CK}{AD}\Rightarrow\frac{CG}{DG}=\frac{CK}{b}\left(2\right)\)
Nhân vế theo vế của (1);(2) ta có:
\(\frac{BK}{b}=\frac{a'}{DG}\Rightarrow BK\cdot DG=a'b\) không đổi.
a) vì tứ giác ABCD là hình bình hành
=> AB // CD
=>AB // DG
=> \(\frac{EB}{ED}\)= \(\frac{AE}{EG}\) (1)
vì ABCD là hình bình hành
=> AD // BC
=> AD // BK
=>\(\frac{AE}{EG}\)= \(\frac{EK}{AE}\) (2)
TỪ (1) VÀ (2) => \(\frac{AE}{EG}\)= \(\frac{EK}{AE}\)
=> AE2 = EK . EG (đpcm)
b) vì AB // DG => \(\frac{AE}{AG}\)= \(\frac{BE}{BD}\)
MÀ AD // BK => \(\frac{AE}{AK}\)= \(\frac{DE}{BD}\)
CỘNG 2 VẾ TRÊN
=> \(\frac{AE}{AG}\)+ \(\frac{AE}{AK}\) = \(\frac{BE}{BD}+\frac{DE}{BD}=1\)
<=> AE ( \(\frac{1}{AG}+\frac{1}{AK}\)) = 1
<=> \(\frac{1}{AG}+\frac{1}{AK}\)= \(\frac{1}{AE}\) (đpcm)
c) vì AD // BK => \(\frac{BK}{AD}=\frac{EB}{DE}\)
CÓ AB // DG => \(\frac{AB}{DG}=\frac{BE}{DE}\)
=> \(\frac{BK}{AD}=\frac{AB}{DG}\)
=> BD . DG = AB . AD
mà AB, AD là các cạnh của hình bình hành ABCD => AB . AD không đổi
=> BK . DG không đổi (đpcm)
a) Ta thấy \(\dfrac{EA}{EK}=\dfrac{ED}{EB}=\dfrac{EG}{EA}\) nên \(AE^2=EK.EG\) (đpcm)
b) Ta có \(\dfrac{AE}{AK}+\dfrac{AE}{AG}=\dfrac{DE}{DB}+\dfrac{BE}{BD}=\dfrac{DE+BE}{BD}=1\) nên suy ra \(\dfrac{1}{AE}=\dfrac{1}{AK}+\dfrac{1}{AG}\) (đpcm)
Do AB song song Cd
=> Áp dụng định lí Ta - lét được \(\frac{AB}{DG}=\frac{AE}{EG}=\frac{BE}{DE}\)
=> AB . EG = DG . AE
Do AD song song BK nên áp dụng định lí Ta lét được
\(\frac{AE}{AK}=\frac{DE}{BD}\)
Do AB sog song với CG nên áp dụng định lí Ta lét được
\(\frac{AE}{AG}=\frac{BE}{BD}\)
=> \(\frac{AE}{AK}+\frac{AE}{AG}=\frac{BE}{BD}+\frac{DE}{BD}=1\)
=>\(\frac{1}{AE}=\frac{1}{AK}+\frac{1}{AG}\)
Ta có \(\frac{BK}{AD}=\frac{AB}{DG}=\frac{BE}{DE}\)
=>\(BK.DG=AB.AD\left(KHÔNG\right)DOI\)
b)
AB // DG suy ra AE / AG = BE / BD
AD // BC suy ra AE / AK = DE / BD
Suy ra AE / AG + AE / AK = BE /BD + DE / BD = BD / BD = 1
Chia 2 vế cho AE
1 / AG + 1 / AK = 1/ AE
a) AB // CG suy ra AE / EG = BE / ED
AD // BC suy ra EK / AE = BE / ED
Suy ra AE / EG = EK / AE
Suy ra AE^2 = EK.EG
Để mình quất cho chứ mấy bạn khác tạm thời chưa quất được
a) Do BK // AD, nên \(\dfrac{EK}{AE}=\dfrac{BE}{ED}\left(1\right)\)
Do AB // DG, nên \(\dfrac{AE}{EG}=\dfrac{BE}{ED}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{EK}{AE}=\dfrac{AE}{EG}\Rightarrow AE^2=EK.EG\)
b) Ta có : \(\dfrac{AE}{EK}=\dfrac{DE}{EB}\Rightarrow\dfrac{AE}{AK}=\dfrac{DE}{DB}\left(3\right)\)
Tương tự : \(\dfrac{AE}{AG}=\dfrac{BR}{BD}\left(4\right)\)
Cộng theo từng vế của (3) và (4) ta có:
\(\dfrac{AE}{AK}+\dfrac{AE}{AG}=\dfrac{DE}{DB}+\dfrac{BE}{DB}=\dfrac{BD}{BD}=1\)
c) Đặt AB = a, AD = b thì \(\dfrac{BK}{KG}=\dfrac{a}{CG};\dfrac{CK}{b}=\dfrac{CG}{DG}\)
Nhân theo từng vế của hai đẳng thức trên, ta được :
\(\dfrac{BK}{b}=\dfrac{a}{DG}\) suy ra BK . DG = ab không đổi.
tự cao ghê nhen